Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087701    DOI: 10.1088/1674-1056/ab942f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure

Hongbo Liu(刘宏波)
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
Abstract  The electrocaloric effect of ferroelectric ceramics has been studied extensively for solid-state caloric cooling. Generally, most ferroelectric ceramics are poor thermal conductors. In this work, the possibility of enhancing the thermal conduction of ferroelectric ceramics through the electrocaloric effect is studied. A multilayer ceramic structure is proposed and the proper sequential electric field is applied to each ceramic layer. The result shows that the thermal conduction of the multilayer structure is significantly enhanced because of the electrocaloric effect of the ferroelectric ceramics. As a result, the work finds an alternatively way of applying the electrocaloric effect, prompting thermal conduction.
Keywords:  electrocaloric effect      thermal conduction  
Received:  23 April 2020      Revised:  15 May 2020      Accepted manuscript online: 
PACS:  77.70.+a (Pyroelectric and electrocaloric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11704242) and the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1447200).
Corresponding Authors:  Hongbo Liu     E-mail:  bohongliu@gmail.com

Cite this article: 

Hongbo Liu(刘宏波) Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure 2020 Chin. Phys. B 29 087701

[1] Valant M 2012 Prog. Mater. Sci. 57 980
[2] Moya X, Kar-Narayan S and Mathur N D 2014 Nat. Mater. 13 439
[3] Liu H and Yang X 2015 AIP Adv. 5 117134
[4] Liu H 2017 Chin. Phys. B 26 117701
[5] Liu H 2018 Chin. Phys. B 27 127701
[6] Mischenko A, Zhang Q, Scott J, Whatmore R and Mathur N 2006 Science 311 1270
[7] Shirsath S E, Cazorla C, Lu T, Zhang L, Tay Y Y, Lou X, Liu Y, Li S and Wang D 2020 Nano Lett. 20 1262
[8] Si M, Saha A K, Liao P Y, Gao S, Neumayer S M, Jian J, Qin J, Wisinger N, Wang H, Maksymovych P, Wu W, Gupta S K and Ye P D 2019 ACS Nano 13 8760
[9] Zhao C, Yang J, Huang Y, Hao X and Wu J 2019 J. Mater. Chem. A 7 25526
[10] Li G, Li J, Li F, Li Y, Liu X, Jiang T, Yan F, He X, Shen B and Zhai J 2020 J. Alloys Compd. 817 152794
[11] Pirc R, Rožič B, Koruza J, Malič B and Kutnjak Z 2014 Europhys. Lett. 107 17002
[12] Geng W, Liu Y, Meng X, Bellaiche L, Scott J F, Dkhil B and Jiang A 2015 Adv. Mater. 27 3165
[13] Jia Y and Sungtaek Ju Y 2012 Appl. Phys. Lett. 100 242901
[14] Gu H, Qian X, Li X, Craven B, Zhu W, Cheng A, Yao S C and Zhang Q M 2013 Appl. Phys. Lett. 102 122904
[15] Plaznik U, Kitanovski A, Rožič B, Malič B, Uršič H, Drnovšek S, Cilenšek J, Vrabelj M, Poredoš A and Kutnjak Z 2015 Appl. Phys. Lett. 106 043903
[16] Defay E, Faye R, Despesse G, Strozyk H, Sette D, Crossley S, Moya X and Mathur N D 2018 Nat. Commun. 9 1827
[17] Plaznik U, Vrabelj M, Kutnjak Z, Malič B, Rožič B, Poredoš A and Kitanovski A 2019 Int. J Refrig. 98 139
[18] Epstein R I and Malloy K J 2009 J. Appl. Phys. 106 064509
[19] Neusel C and Schneider G A 2014 J. Mech. Phys. Solids 63 201
[20] Israel C, Mathur N D and Scott J F 2008 Nat. Mater. 7 93
[21] Israel C, Kar-Narayan S and Mathur N D 2008 Appl. Phys. Lett. 93 173501
[22] Israel C, Petrov V M, Srinivasan G and Mathur N D 2009 Appl. Phys. Lett. 95 072505
[23] Kar-Narayan S and Mathur N 2010 J. Phys. D:Appl. Phys. 43 032002
[24] Kar-Narayan S and Mathur N D 2009 Appl. Phys. Lett. 95 242903
[25] Crossley S, McGinnigle J R, Kar-Narayan S and Mathur N D 2014 Appl. Phys. Lett. 104 082909
[26] Smith N A S, Rokosz M K and Correia T M 2014 J. Appl. Phys. 116 044511
[27] Sette D, Asseman A, Gérard M, Strozyk H, Faye R and Defay E 2016 APL Mater. 4 091101
[28] Lu B, Wen X, Tang Z, Liang B, Tao T, Xie Z, Zhang T, Tang X, Xiang Y, Liao J and Lu S 2016 Sci. China-Technol. Sci. 59 1054
[29] Faye R, Strozyk H, Dkhil B and Defay E 2017 J. Phys. D:Appl. Phys. 50 464002
[30] Moya X, Defay E, Mathur N D and Hirose S 2018 MRS Bull. 43 291
[31] Nair B, Usui T, Crossley S, Kurdi S, Guzmán-Verri G G, Moya X, Hirose S and Mathur N D 2019 Nature 575 468
[32] He Y 2004 Thermochim. Acta 419 135
[1] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[2] Theoretical analysis of cross-plane lattice thermal conduction in graphite
Yun-Feng Gu(顾云风). Chin. Phys. B, 2019, 28(6): 066301.
[3] Electrocaloric effect and pyroelectric properties of organic-inorganic hybrid (C2H5NH3)2CuCl4
Yi Liu(刘义), Yan-Fen Chang(畅艳芬), Young Sun(孙阳), Jun Shen(沈俊), Li-Qin Yan(闫丽琴), Zun-Ming Lu(卢遵铭). Chin. Phys. B, 2019, 28(11): 117701.
[4] Effect of an electric field on the electrocaloric response of ferroelectrics
Hongbo Liu(刘宏波). Chin. Phys. B, 2018, 27(12): 127701.
[5] Consecutive induction melting of nickel-based superalloy in electrode induction gas atomization
Shan Feng(峰山), Min Xia(夏敏), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(6): 060201.
[6] Thermal properties of two-dimensional materials
Gang Zhang(张刚), Yong-Wei Zhang(张永伟). Chin. Phys. B, 2017, 26(3): 034401.
[7] On the parameters for electrocaloric effect predicted by indirect method
Hong-Bo Liu(刘宏波). Chin. Phys. B, 2017, 26(11): 117701.
[8] Normal thermal conduction in lattice models with asymmetric harmonic interparticle interactions
Zhong Yi (钟毅), Zhang Yong (张勇), Wang Jiao (王矫), Zhao Hong (赵鸿). Chin. Phys. B, 2013, 22(7): 070505.
[9] Composition and misfit strain dependence of electrocaloric effect of Pb1-xSrxTiO3 thin films
Qiu Jian-Hua (邱建华), Ding Jian-Ning (丁建宁), Yuan Ning-Yi (袁宁一), Wang Xiu-Qin (王秀琴). Chin. Phys. B, 2013, 22(1): 017701.
[10] Effect of misfit strain on the electrocaloric effect of polydomain epitaxial ferroelectric thin films
Qiu Jian-Hua (邱建华), Ding Jian-Ning (丁建宁), Yuan Ning-Yi (袁宁一), Wang Xiu-Qin (王秀琴). Chin. Phys. B, 2012, 21(9): 097701.
[11] Thermal analysis of intense femtosecond laser ablation of aluminum
Hu Hao-Feng(胡浩丰), Ji Yang(吉扬), Hu Yang(胡阳), Ding Xiao-Yan(丁晓雁), Liu Xian-Wen(刘贤文), Guo Jing-Hui(郭静慧), Wang Xiao-Lei(王晓雷), and Zhai Hong-Chen(翟宏琛) . Chin. Phys. B, 2011, 20(4): 044204.
No Suggested Reading articles found!