CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure |
Hongbo Liu(刘宏波) |
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China |
|
|
Abstract The electrocaloric effect of ferroelectric ceramics has been studied extensively for solid-state caloric cooling. Generally, most ferroelectric ceramics are poor thermal conductors. In this work, the possibility of enhancing the thermal conduction of ferroelectric ceramics through the electrocaloric effect is studied. A multilayer ceramic structure is proposed and the proper sequential electric field is applied to each ceramic layer. The result shows that the thermal conduction of the multilayer structure is significantly enhanced because of the electrocaloric effect of the ferroelectric ceramics. As a result, the work finds an alternatively way of applying the electrocaloric effect, prompting thermal conduction.
|
Received: 23 April 2020
Revised: 15 May 2020
Accepted manuscript online:
|
PACS:
|
77.70.+a
|
(Pyroelectric and electrocaloric effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11704242) and the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1447200). |
Corresponding Authors:
Hongbo Liu
E-mail: bohongliu@gmail.com
|
Cite this article:
Hongbo Liu(刘宏波) Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure 2020 Chin. Phys. B 29 087701
|
[1] |
Valant M 2012 Prog. Mater. Sci. 57 980
|
[2] |
Moya X, Kar-Narayan S and Mathur N D 2014 Nat. Mater. 13 439
|
[3] |
Liu H and Yang X 2015 AIP Adv. 5 117134
|
[4] |
Liu H 2017 Chin. Phys. B 26 117701
|
[5] |
Liu H 2018 Chin. Phys. B 27 127701
|
[6] |
Mischenko A, Zhang Q, Scott J, Whatmore R and Mathur N 2006 Science 311 1270
|
[7] |
Shirsath S E, Cazorla C, Lu T, Zhang L, Tay Y Y, Lou X, Liu Y, Li S and Wang D 2020 Nano Lett. 20 1262
|
[8] |
Si M, Saha A K, Liao P Y, Gao S, Neumayer S M, Jian J, Qin J, Wisinger N, Wang H, Maksymovych P, Wu W, Gupta S K and Ye P D 2019 ACS Nano 13 8760
|
[9] |
Zhao C, Yang J, Huang Y, Hao X and Wu J 2019 J. Mater. Chem. A 7 25526
|
[10] |
Li G, Li J, Li F, Li Y, Liu X, Jiang T, Yan F, He X, Shen B and Zhai J 2020 J. Alloys Compd. 817 152794
|
[11] |
Pirc R, Rožič B, Koruza J, Malič B and Kutnjak Z 2014 Europhys. Lett. 107 17002
|
[12] |
Geng W, Liu Y, Meng X, Bellaiche L, Scott J F, Dkhil B and Jiang A 2015 Adv. Mater. 27 3165
|
[13] |
Jia Y and Sungtaek Ju Y 2012 Appl. Phys. Lett. 100 242901
|
[14] |
Gu H, Qian X, Li X, Craven B, Zhu W, Cheng A, Yao S C and Zhang Q M 2013 Appl. Phys. Lett. 102 122904
|
[15] |
Plaznik U, Kitanovski A, Rožič B, Malič B, Uršič H, Drnovšek S, Cilenšek J, Vrabelj M, Poredoš A and Kutnjak Z 2015 Appl. Phys. Lett. 106 043903
|
[16] |
Defay E, Faye R, Despesse G, Strozyk H, Sette D, Crossley S, Moya X and Mathur N D 2018 Nat. Commun. 9 1827
|
[17] |
Plaznik U, Vrabelj M, Kutnjak Z, Malič B, Rožič B, Poredoš A and Kitanovski A 2019 Int. J Refrig. 98 139
|
[18] |
Epstein R I and Malloy K J 2009 J. Appl. Phys. 106 064509
|
[19] |
Neusel C and Schneider G A 2014 J. Mech. Phys. Solids 63 201
|
[20] |
Israel C, Mathur N D and Scott J F 2008 Nat. Mater. 7 93
|
[21] |
Israel C, Kar-Narayan S and Mathur N D 2008 Appl. Phys. Lett. 93 173501
|
[22] |
Israel C, Petrov V M, Srinivasan G and Mathur N D 2009 Appl. Phys. Lett. 95 072505
|
[23] |
Kar-Narayan S and Mathur N 2010 J. Phys. D:Appl. Phys. 43 032002
|
[24] |
Kar-Narayan S and Mathur N D 2009 Appl. Phys. Lett. 95 242903
|
[25] |
Crossley S, McGinnigle J R, Kar-Narayan S and Mathur N D 2014 Appl. Phys. Lett. 104 082909
|
[26] |
Smith N A S, Rokosz M K and Correia T M 2014 J. Appl. Phys. 116 044511
|
[27] |
Sette D, Asseman A, Gérard M, Strozyk H, Faye R and Defay E 2016 APL Mater. 4 091101
|
[28] |
Lu B, Wen X, Tang Z, Liang B, Tao T, Xie Z, Zhang T, Tang X, Xiang Y, Liao J and Lu S 2016 Sci. China-Technol. Sci. 59 1054
|
[29] |
Faye R, Strozyk H, Dkhil B and Defay E 2017 J. Phys. D:Appl. Phys. 50 464002
|
[30] |
Moya X, Defay E, Mathur N D and Hirose S 2018 MRS Bull. 43 291
|
[31] |
Nair B, Usui T, Crossley S, Kurdi S, Guzmán-Verri G G, Moya X, Hirose S and Mathur N D 2019 Nature 575 468
|
[32] |
He Y 2004 Thermochim. Acta 419 135
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|