Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077105    DOI: 10.1088/1674-1056/ab969b

Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study

Xiao-Ping Wei(魏小平)1, Tie-Yi Cao(曹铁义)1, Xiao-Wei Sun(孙小伟)1, Qiang Gao(高强)2, Peifeng Gao(高配峰)3, Zhi-Lei Gao(高治磊)1, Xiao-Ma Tao(陶小马)4
1 The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China;
2 Institute of Materials Science, Technische Universitat Darmstadt, 64287 Darmstadt, Germany;
3 Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education, College of Civil Engineering and Mechanics, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China;
4 School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Abstract  Using the first-principles calculations, we study the structural, electronic, and magnetic properties along with exchange interactions and Curie temperatures for CrZrCoZ (Z=Al, Ga, In, Tl, Si, Pb) quaternary Heusler alloys. The results show that the CrZrCoZ alloys are half-metallic ferrimagnets, and their total spin magnetic moments, which are mainly carried by the Cr atom, obey the Slater-Pauling rule. Analysis of local density of states confirms that the exchange splitting between eg and t2g states leads to the formation of half-metallic gap. According to the calculated Heisenberg exchange coupling parameters, it is found that the Cr(A)-Cr(A) and Cr(A)-Zr(B) exchanges dominate the appearance of ferrimagnetic states in CrZrCoZ (Z=Al, Ga, In, Tl, Pb) alloys, and it is the Cr(A)-Zr(B) and Zr(B)-Zr(B) exchanges for CrZrCoSi alloy. Finally, we estimate the Curie temperatures of CrZrCoZ by using mean-field approximation, it is found that the CrZrCoZ (Z=Al, Ga, In, Tl, Pb) alloys have noticeably higher Curie temperatures than room temperature. So, we expect that the CrZrCoZ alloys are promising candidates in spintronic applications in future.
Keywords:  quaternary Heusler alloys      electronic structure      magnetic properties      Curie temperature  
Received:  23 March 2020      Revised:  15 May 2020      Published:  05 July 2020
PACS:  71.20.Lp (Intermetallic compounds)  
  85.75.Dd (Magnetic memory using magnetic tunnel junctions)  
  75.50.-y (Studies of specific magnetic materials)  
  77.80.B- (Phase transitions and Curie point)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864021) and Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University, China, the Key Talent Foundation of Gansu Province, China (Grant No. 2020RCXM100), and Excellent Research Team of Lanzhou Jiaotong University, China (Grant No. 201803).
Corresponding Authors:  Xiao-Ping Wei     E-mail:

Cite this article: 

Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马) Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study 2020 Chin. Phys. B 29 077105

[1] Jourdan M, Minar J, Braun J, et al. 2014 Nat. Commun. 5 3974
[2] Li G N and Jin Y J 2009 Chin. Phys. Lett. 26 107101
[3] Zhao K, Zhang K, Wang J J, Yu J and Wu S X 2011 Acta Phys. Sin. 60 127101 (in Chinese)
[4] Cheng Z M, Wang X Q, Wang F, Lu L Y, Liu G B, Duan Z F and NieZ X 2011 Acta Phys. Sin. 60 096301 (in Chinese)
[5] Gao Y C, Wang X T and Habib R 2015 Chin. Phys. B 24 67102
[6] Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H and Wu G H 2003 Appl. Phys. Lett. 82 424
[7] Kainuma R, lmano Y, lto W, Morito H, Sutou Y, Oikawa K, Fujita Aand lshaida K 2006 Appl. Phys. Lett. 88 192513
[8] Tan C L, Tian X H and Cai W 2008 Chin. Phys. Lett. 25 3372
[9] Chen J, Li Y, Shang J X and Xu H B 2009 Chin. Phys. Lett. 26 47101
[10] Zhao J J, Shu D, Qi X, Liu E K, Zhu W, Feng L, Wang W H and Wu G H 2011 Acta Phys. Sin. 60 107203 (in Chinese)
[11] Li G T, Liu Z H, Meng F Y, Ma X Q and Wu G H 2013 Chin. Phys. B 22 126201
[12] Bainsla L, Mallick A I, Raja M M, Nigam A K, Varaprasad B S D ChS, Takahashi Y K, Alam A, Suresh K G and Hono K 2015 Phys. Rev. B 91 104408
[13] Xu G Z, Liu E K, Du Y, Li G J, Liu G D, Wang W H and Wu G H 2013 Europhys. Lett. 102 17007
[14] Gao Q, Xie H H, Li L, Lei G, Wang K, Deng J B and Hu X R 2015 Superlattice Microst. 85 536
[15] Gao Q, Opahle I and Zhang H B 2019 Phys. Rev. Materials 3 024410
[16] Khan M, Ali N and Stadler S 2007 J. Phys. Appl. 101 053919
[17] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
[18] Zhang X W 2018 Chin. Phys. B 27 127101
[19] Wei X P, Gao P F and Zhang Y L 2020 Curr. Appl. Phys. 20 593
[20] Wernick J H, Hull G W, Geballe T H, Bernardini J E and Waszczak J V 1983 Mater. Lett. 2 90
[21] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von MolnarS, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[22] Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1
[23] Heusler F 1903 Verh. DPG. 5 219
[24] Heusler F, Starck W and Haupt E 1903 Verh. DPG. 5 220
[25] Drews J, Eberz U and Schuster H 1986 J. Less-Common Met. 116 271
[26] Dai X, Liu G, Fecher G H, Felser C, Li Y and Liu H 2009 J. Appl.Phys. 105 07E901
[27] Gao G Y, Hu L, Yao K L, Luo B and Liu N 2013 J. Alloys Compd. 551 539
[28] Alijani V, Winterlik J, Feher G H, Naghavi S S and Felser C 2011 Phys. Rev. B 83 184428
[29] Alijani V, Ouardi S, Fecher G H, Winterlik J, Naghavi S S, Kozina X, Stryganyuk G, Felser C, lkenaga E, Yamashita Y, Ueda S and Kobayashi K 2011 Phys. Rev. B 84 224416
[30] Kundu A, Ghosh S, Banerjee R, Ghosh S and Sanyal B 2017 Sci. Rep. 7 1803
[31] Kandpal H C, Ksenofontov V, Wojcik M, Seshadri R and Felser C 2007 J. Phys. D: Appl. Phys. 40 1587
[32] Singh M, Saini H S, Thakur J, Reshak A H and Kashyap M K 2013 J. Alloys Compd. 580 201
[33] Wang X T, Cui Y T, Liu X F and Liu G D 2015 J. Magn. Mater. Magn. 394 50
[34] Gökoğlu G 2012 Solid State Sci. 14 1273
[35] Rasool M N, Mehmood S, Sattar M A, Khan M A and Hussain A 2015 J. Mag. Mag. Mater. 395 97
[36] Kubler J, Fecher G H and Felser C 2007 Phys. Rev. B 76 024414
[37] Nehra J, Sudheesh V D, Lakshmi N, and Venugopalan K and 2013 Phys. Status Solidi RRL 7 289
[38] Wang X T, Khachai H, Khenata R, et al. 2017 Sci. Rep. 7 16183
[39] Feng L, Ma J, Yang Y, Lin T and Wang L 2018 Appl. Sci. 8 2370
[40] Hoat D M 2019 Chem. Phys. 523 130
[41] Enamullah Venkateswara Y, Gupta S, Varma M R, Singh P, Suresh K G and Alam A 2015 Phys. Rev. B 92 224413
[42] Jain R, Jain V K, Chandra A R, Jain V and Lakshmi N 2018 J. Supercond. Nov. Magn. 31 2399
[43] Bahnes A, Boukortt A, Abbassa H, Aimouch D E, Hayn R and Zaoui A 2018 J. Alloys Compd. 731 1208
[44] Kang X H and Zhang J M 2017 J. Phys. Chem. Solids 105 9
[45] Gao Y C and Gao X 2015 AIP Adv. 5 057157
[46] Meinert M and Geisler M P 2013 J. Magn. Mater. Magn. 341 72
[47] Mohanta S K, Tao Y X, Yan X Y, Qin G H, Chandragiri V, Li X, JingC, Cao S X, Zhang J C, Qiao Z H, Gu H and Ren W 2017 J. Mater. Magn. 430 430
[48] Jin H S and Lee K W 2019 Curr. Appl. Phys. 19 193
[49] Wei X P, Zhang Y L, Wang T, Sun X W, Song T, Guo P and Deng J B 2017 Mater. Res. Bull. 86 139
[50] Wei X P, Gao P F, Zhang Y L and Zhang H B 2019 J. Magn. Mater. Magn. 477 190
[51] Yan P L, Zhang J M and Xu K W 2015 J. Magn. Mater. Magn. 391 43
[52] Koepernik K and Eschrig K 1999 Phys. Rev. B 59 1743
[53] Opahle I, Koepernik K and Eschrig H 1999 Phys. Rev. B 60 14035.
[54] Ebert H, Kodderitzsch D and Minar J 2011 Rep. Prog. Phys. 74 096501
[55] Lloyd P and Smith P V 1972 Adv. Phys. 21 69
[56] Zeller R 2008 J. Phys.: Condens. Matter 20 035220
[57] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[58] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[59] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[60] Zhang W X, Song Z D, Peng B and Zhang W L 2012 J. Appl. Phys. 112 043904
[61] Wei X P and Zhou Y H 2018 Intermetallics 93 283
[62] Wei X P, Zhang Y L, Sun X W, Song T, Guo P, Gao Y, Zhang J L, ZhuX F and Deng J B 2017 J. Alloys Compd. 694 1254
[63] Tanaka M A, Lshikawa Y, Wada Y, Hori S, Murata A, Horii S, Yamanishi Y, Mibu K, Kondou K, Ono T and Kasai S 2012 J. Appl. Phys. 111 053902
[64] Yousuf S and Gupta D C 2017 Mater. Res. Express 4 116307
[65] Johnston I D and Consortium for Upper Level Physics Software 1996 Solid State Physics Simulations (New York: Wiley)
[66] Liechtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 J. Magn. Mater. Magn. 67 65
[67] Skaftouros S, Özdoğan K, Şaşioğlu E and Galanakis I 2013 Phys. Rev. B 87 024420
[68] Özdoğan K, Şaşioğlu E and Galanakis I 2013 Appl. J. Phys. 113 193903
[69] Şaşioğlu E, Sandratskii L M and Bruno P 2005 Phys. Rev. B 72 184415
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[7] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[8] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[9] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[10] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[11] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[12] A novel diluted magnetic semiconductor (Ca,Na)(Zn,Mn)2Sb2 with decoupled charge and spin dopings
Yilun Gu(顾轶伦), Haojie Zhang(张浩杰), Rufei Zhang(张茹菲), Licheng Fu(傅立承), Kai Wang(王恺), Guoxiang Zhi(智国翔), Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2020, 29(5): 057507.
[13] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[14] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[15] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
No Suggested Reading articles found!