Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 093601    DOI: 10.1088/1674-1056/ab9613
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations

Hui Wang(王翚)1, Ze-Yu Zhang(张泽宇)1, Xiao-Wu Cai(蔡小五)2, Zi-Han Liu(刘子晗)1, Yong-Xiang Zhang(张永翔)1,3, Zhen-Long Lv(吕珍龙)1, Wei-Wei Ju(琚伟伟)1, Hui-Hui Liu(刘汇慧)1, Tong-Wei Li(李同伟)1, Gang Liu(刘钢)1, Hai-Sheng Li(李海生)1, Hai-Tao Yan(闫海涛)1, Min Feng(冯敏)4
1 Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics Engineering, Henan University of Science and Technology, Luoyang 471023, China;
2 First High School of Luoyang City, Luoyang 471001, China;
3 Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
4 School of Physics, Nankai University, Tianjin 300071, China
Abstract  Up to now, at least 806 carbon allotropes have been proposed theoretically. Three interesting carbon allotropes (named Pbam-32, P6/mmm, and I43d) were recently uncovered based on a random sampling strategy combined with space group and graph theory. The calculation results show that they are superhard and remarkably stable compared with previously proposed metastable phases. This indicates that they are likely to be synthesized in experiment. We use the factor group analysis method to analyze their Γ-point vibrational modes. Owing to their large number of atoms in primitive unit cells (32 atoms in Pbam-32, 36 atoms in P6/mmm, and 94 atoms in I43d), they have many Raman- and infrared-active modes. There are 48 Raman-active modes and 37 infrared-active modes in Pbam-32, 24 Raman-active modes and 14 infrared-active modes in P6/mmm, and 34 Raman-active modes and 35 Raman- and infrared-active modes in I43d. Their calculated Raman spectra can be divided into middle frequency range from 600 cm-1 to 1150 cm-1 and high frequency range above 1150 cm-1. Their largest infrared intensities are 0.82, 0.77, and 0.70 (D/Å)2/amu for Pbam, P6/mmm, and I43d, respectively. Our calculated results provide an insight into the lattice vibrational spectra of these sp3 carbon allotropes and suggest that the middle frequency Raman shift and infrared spectrum may play a key role in identifying newly proposed carbon allotropes.
Keywords:  Raman and infrared spectra      carbon allotrope      first-principles calculation  
Received:  31 March 2020      Revised:  20 May 2020      Accepted manuscript online:  25 May 2020
PACS:  36.20.Ng (Vibrational and rotational structure, infrared and Raman spectra)  
  81.05.U- (Carbon/carbon-based materials)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1404111, 11504089, 61874160, 61675064, and 11404098), the Fund for Young Key Teacher of Henan Province, China (Grant No. 2016GGJS-059), and the Henan Provincial Major Scientific and Technological Projects, China (Grant No. 182102210289).
Corresponding Authors:  Hui Wang, Min Feng     E-mail:  nkxirainbow@gmail.com;nkfm@nankai.edu.cn

Cite this article: 

Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏) Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations 2020 Chin. Phys. B 29 093601

[1] Hoffmann R, Kabanov A A, Golov A A and Proserpio D M 2016 Angewandte Chemie International Edition 55 10962
[2] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T and Kaxiras E 2018 Nature 556 80
[3] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[4] Takagi M, Taketsugu T, Kino H, Tateyama Y, Terakura K and Maeda S 2017 Phys. Rev. B 95 184110
[5] Shi X, He C, Pickard CJ, Tang C and Zhong J 2018 Phys. Rev. B 97 014104
[6] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[7] He C, Shi X, Clark S J, Li J, Pickard C J, Ouyang T, Zhang C, Tang C and Zhong J 2018 Phys. Rev. Lett. 121 175701
[8] He C, Zhang C, Xiao H, Meng L and Zhong J 2017 Carbon 112 91
[9] Ribeiro F J, Tangney P, Louie S G and Cohen M L 2006 Phys. Rev. B 74 172101
[10] Li Q, Ma Y, Oganov A R, Wang H, Wang H, Xu Y, Cui T, Mao H K and Zou G 2009 Phys. Rev. Lett. 102 175506
[11] He C, Sun L, Zhang C, Peng X, Zhang K and Zhong J 2012 Solid State Commun. 152 1560
[12] Li D, Bao K, Tian F, Zeng Z, He Z, Liu B and Cui T 2012 Phys. Chem. Chem. Phys. 14 4347
[13] Sheng X L, Yan Q B, Ye F, Zheng Q R and Su G 2011 Phys. Rev. Lett. 106 155703
[14] Zhang J, Wang R, Zhu X, Pan A, Han C, Li X, Zhao D, Ma C, Wang W and Su H 2017 Nat. Commun. 8 683
[15] Yang X, Yao M, Wu X, Liu S, Chen S, Yang K, Liu R, Cui T, Sundqvist B and Liu B 2017 Phys. Rev. Lett. 118 245701
[16] Amsler M, Flores-Livas J A, Lehtovaara L, Balima F, Ghasemi S A, Machon D, Pailhés S, Willand A, Caliste D, Botti S, San Miguel A, Goedecker S and Marques M A L 2012 Phys. Rev. Lett. 108 065501
[17] Mao W L, Mao H K, Eng P J, Trainor T P, Newville M, Kao C C, Heinz D L, Shu J, Meng Y and Hemley R J 2003 Science 302 425
[18] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212
[19] Gupta A, Chen G, Joshi P, Tadigadapa S and Eklund PC 2006 Nano Lett 6 2667
[20] Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A and Ferrari A C 2012 Nat. Mater. 11 294
[21] Lui C H and Heinz T F 2013 Phys. Rev. B 87 121404
[22] Ferrari A C, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K and Roth S 2006 Phys. Rev. Lett. 97 187401
[23] Bai Y, Zhao X, Li T, Lv Z, Lv S, Han H, Yin Y and Wang H 2014 Carbon 78 70
[24] Wang H, Wang Y, Cao X, Feng M and Lan G 2009 J. Raman Spectros. 40 1791
[25] Wang H, You J, Wang L, Feng M and Wang Y 2010 J. Raman Spectros. 41 125
[26] Gupta A, Chen G, Joshi P, Tadigadapa S and Eklund P 2006 Nano Lett. 6 2667
[27] Wang H, Feng M, Zhang X, Tan P H and Wang Y 2015 J. Phys. Chem. C 119 6906
[28] Kürti J, Kresse G and Kuzmany H 1998 Phys. Rev. B 58 R8869
[29] Wang H, Cao X, Feng M, Wang Y, Jin Q, Ding D and Lan G 2009 Spectrochim Acta A Mol. Biomol. Spectrosc. 71 1932
[30] Tsareva S Y, Devaux X, McRae E, Aranda L, Gregoire B, Carteret C, Dossot M, Lamouroux E, Fort Y, Humbert B and Mevellec J Y 2014 Carbon 67 753
[31] Nemanich R J, Lucovsky G and Solin S A 1997 Solid State Commun. 23 117
[32] Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L and Basov D N 2008 Nat. Phys. 4 532
[33] Anastassakis E and Burstein E 1970 Phys. Rev. B 2 1952
[34] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P and Wentzcovitch RM 2009 J. Phys.: Condens. Matter 21 395502
[35] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[36] Baroni S, de Gironcoli S and Dal Corso A 2001 Rev. Mod. Phys. 73 515
[37] Feng X K, Shi S, Shen J Y, Shang S L, Yao M Y and Liu Z K 2016 J. Nucl. Mater. 479 461
[38] Shi S, Ke X, Ouyang C, Zhang H, Ding H, Tang Y, Zhou W, Li P, Lei M and Tang W 2009 J. Power Sources 194 830
[39] Shang S L, Hector J L G, Shi S, Qi Y, Wang Y and Liu Z K 2012 Acta Materialia 60 5204
[40] Shi S, Zhang H, Ke X, Ouyang C, Lei M and Chen L 2009 Phys. Lett. A 373 4096
[41] Wang H, Liu H, Zhang Z, Liu Z, Lv Z, Li T, Ju W, Li H, Cai X and Han H 2019 NPJ Comput. Mater. 5 1
[42] Wang H, Kong L, Zhao X, Lv Z, Li T, Ju W W, You J and Bai Y 2013 Appl. Phys. Lett. 103 101902
[43] Zhang G Y, Lan G X and Wang Y F 1991 Lattice Vibration Spectroscopy, 2nd edn. (High Education Press) p. 79 (in Chinese)
[44] Porezag D and Pederson M 1996 Phys. Rev. B 54 7830
[45] Favors R N, Jiang Y, Loethen Y L and Ben-Amotz D 2005 Rev. Sci. Instrum. 76 033108
[46] Lü Z L, You J H, Zhao Y Y and Wang H 2011 Commun. Theor. Phys. 55 513
[47] Momma K and Izumi F 2011 J. Appl. Crystallography 44 1272
[1] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[2] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[3] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[4] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[5] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
[6] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[7] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[8] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[9] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[10] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[11] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[12] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[13] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[14] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[15] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
No Suggested Reading articles found!