Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067901    DOI: 10.1088/1674-1056/ab9196

High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)

Mingtian Zheng1, Eike F. Schwier2, Hideaki Iwasawa1, Kenya Shimada2
1 Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan;
2 Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-0046, Japan
Abstract  We have investigated the electronic states of clean Fe(001) and oxygen adsorbed Fe(001)-p(1×1)-O films epitaxially grown on MgO(001) substrates by means of polarization-dependent angle-resolved photoemission spectroscopy (ARPES) and extensive density-functional theory (DFT) calculations. The observed Fermi surfaces and band dispersions of pure Fe near the Fermi level were modified upon oxygen adsorption. By the detailed comparison of ARPES and DFT results of the oxygen adsorbed Fe surface, we have clarified the orbital-dependent p-d hybridization in the topmost and second Fe layers. Furthermore, the observed energy levels and Fermi wave numbers for the oxygen adsorbed Fe surface were deviated from the DFT calculations depending on the orbital characters and momentum directions, indicating an anisotropic interplay of the electron correlation and p-d hybridization effects in the surface region.
Keywords:  angle-resolved photoemission      iron surface      oxygen adsorption      density-functional theory (DFT)  
Received:  29 April 2020      Revised:  09 May 2020      Published:  05 June 2020
PACS:  79.60.-i (Photoemission and photoelectron spectra)  
  68.47.Gh (Oxide surfaces)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Corresponding Authors:  Mingtian Zheng, Kenya Shimada     E-mail:;

Cite this article: 

Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001) 2020 Chin. Phys. B 29 067901

[1] Henrich V E and Cox P A 1994 The surface science of metal oxides (Cambridge: Cambridge University Press)
[2] Parkinson G S 2016 Surf. Sci. Rep. 71 272
[3] Uebing C 1998 Prog. Solid. State Ch. 26 155
[4] Picone A, Riva M, Brambilla A, Calloni A, Bussetti G, Finazzi M, Ciccacci F and Duó L 2016 Surf. Sci. Rep. 71 32
[5] Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Nature Mater. 3 868
[6] Fu Q, Li W X, Yao Y, Liu H, Su H Y, Ma D, Gu X K, Chen L, Wang Z, Zhang H, Wang B and Bao X 2010 Science 328 1141
[7] Legg K O, Jona F, Jepsen D W and Marcus P M 1977 Phys. Rev. B 16 5271
[8] Jona F and Marcus P M 1987 Solid State Commun. 64 667
[9] Headrick R L, Konarski P, Ylisove S M and Graham W R 1989 Phys. Rev. B 39 5713
[10] Parihar S S, Meyerheim H L, Mohseni K, Ostanin S, Ernst A, Jedrecy N, Felici R and Kirschner J 2010 Phys. Rev. B 81 075428
[11] Huang H and Hermanson J 1985 Phys. Rev. B 32 6312
[12] Chubb S R and Pickett W E 1987 Phys. Rev. Lett. 58 1248
[13] Błoński P, Kiejna A and Hafner J 2005 Surf. Sci. 590 88
[14] Błoński P, Kiejna A and Hafner J 2007 J. Phys.: Condens. Matter 19 096011
[15] Hugosson H W, Cao W M, Seetharaman S and Delin A 2013 J. Phys. Chem. C 117 6161
[16] Panzner G, Mueller D R and Rhodin T N 1985 Phys. Rev. B 32 3472
[17] Johnson P D, Clarke A, Brookes N B, Hulbert S L, Sinkovic B and Smith N V 1988 Phys. Rev. Lett. 61 2257
[18] Clarke A, Brookes N B, Johnson P D, Weinert M, Sinkovic B and Smith N V 1990 Phys. Rev. B 41 9659
[19] Fink R L, Mulhollan G A, Andrews A B, Erskine J L and Walters G K 1992 Phys. Rev. B 45 9824
[20] Eibl C, Schmidt A B and Donath M 2012 Phys. Rev. B 86 161414
[21] Donati F, Sessi P, Achilli S, Li Bassi A, Passoni M, Casari C S, Bottani C E, Brambilla A, Picone A, Finazzi M, Duó L, Trioni M I and Ciccacci F 2009 Phys. Rev. B 79 195430
[22] Picone A, Fratesi G, Brambilla A, Sessi P, Donati F, Achilli S, Maini L, Trioni M I, Casari C S, Passoni M, Li Bassi A, Finazzi M, Duó L and Ciccacci F 2010 Phys. Rev. B 81 115450
[23] Picone A, Brambilla A, Calloni A, Duó L, Finazzi M and Ciccacci F 2011 Phys. Rev. B 83 235402
[24] Tange A, Gao C L, Yavorsky B Y, Maznichenko I V, Etz C, Ernst A, Hergert W, Mertig I, Wulfhekel W and Kirschner J 2010 Phys. Rev. B 81 195410
[25] Bertacco R and Ciccacci F 1999 Phys. Rev. B 59 4207
[26] Bertacco R, Merano M and Ciccacci F 1998 Appl. Phys. Lett. 72 2050
[27] Bertacco R, Onofrio D and Ciccacci F 1999 Rev. Sci. Instrum. 70 3572
[28] Okuda T, Takeichi Y, Maeda Y, Harasawa A, Matsuda I, Kinoshita T and Kakizaki A 2008 Rev. Sci. Instrum. 79 123117
[29] Schäfer J, Hoinkis M, Rotenberg E, Blaha P and Claessen R 2005 Phys. Rev. B 72 155115
[30] Cui X Y, Shimada K, Sakisaka Y, Kato H, Hoesch M, Oguchi T, Aiura Y, Namatame H and Taniguchi M 2010 Phys. Rev. B 82 195132
[32] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[34] Popescu V and Zunger A 2012 Phys. Rev. B 85 085201
[35] Mulliken R S 1955 J. Chem. Phys. 23 1833
[36] Shimada K, Arita M, Matsui T, Goto K, Qiao S, Yoshida K, Taniguchi M, Namatame H, Sekitani T, Tanaka K, Yoshida H, Shirasawa K, Smolyakov N and Hiraya A 2001 Nucl. Instrum. Methods Phys. Res. A 467-468 504
[37] Iwasawa H, Shimada K, Schwier E F, Zheng M, Kojima Y, Hayashi H, Jiang J, Higashiguchi M, Aiura Y, Namatame H and Taniguchi M 2017 J. Synchrotron Rad. 24 836
[38] Taking into account the ARPES results on pure Fe(001) given by Plucinski et al. 2009 Phys. Rev. B 80 184430, the inner potential V0 is estimated to be |V0|~6-7 eV. In this case, the kz value for the ARPES result taken at hν=55 eV is away from the Γ point about ~25% of the distance between Γ and H points of the bulk Brillouin zone. Hence it is closer to the Γ point.
[39] Kittel C 1987 Quantum theory of solids, 2nd Edn. (New York: John Wiley & Sons)
[40] Callaway J and Wang C S 1977 Phys. Rev. B 16 2095
[41] Liebsch A and Lichtenstein A 2000 Phys. Rev. Lett. 84 1591
[1] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[2] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[3] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林), X J Zhou(周兴江). Chin. Phys. B, 2020, 29(10): 107402.
[4] Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2-xPbx)Sr2CaCu2O8+δ superconductors
Jing Liu(刘静), Lin Zhao(赵林), Qiang Gao(高强), Ping Ai(艾平), Lu Zhang(张璐), Tao Xie(谢涛), Jian-Wei Huang(黄建伟), Ying Ding(丁颖), Cheng Hu(胡成), Hong-Tao Yan(闫洪涛), Chun-Yao Song(宋春尧), Yu Xu(徐煜), Cong Li(李聪), Yong-Qing Cai(蔡永青), Hong-Tao Rong(戎洪涛), Ding-Song Wu(吴定松), Guo-Dong Liu(刘国东), Qing-Yan Wang(王庆艳), Yuan Huang(黄元), Feng-Feng Zhang(张丰丰), Feng Yang(杨峰), Qin-Jun Peng(彭钦军), Shi-Liang Li(李世亮), Huai-Xin Yang(杨槐馨), Jian-Qi Li(李建奇), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2019, 28(7): 077403.
[5] Direct observation of the f-c hybridization in the ordered uranium films on W(110)
Qiuyun Chen(陈秋云), Shiyong Tan(谭世勇), Wei Feng(冯卫), Lizhu Luo(罗丽珠), Xiegang Zhu(朱燮刚), Xinchun Lai(赖新春). Chin. Phys. B, 2019, 28(7): 077404.
[6] Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors
Bin-Bin Fu(付彬彬), Chang-Jiang Yi(伊长江), Zhi-Jun Wang(王志俊), Meng Yang(杨萌), Bai-Qing Lv(吕佰晴), Xin Gao(高鑫), Man Li(李满), Yao-Bo Huang(黄耀波), Hong-Ming Weng(翁红明), You-Guo Shi(石友国), Tian Qian(钱天), Hong Ding(丁洪). Chin. Phys. B, 2019, 28(3): 037103.
[7] Detailed electronic structure of three-dimensional Fermi surface and its sensitivity to charge density wave transition in ZrTe3 revealed by high resolution laser-based angle-resolved photoemission spectroscopy
Shou-Peng Lyu(吕守鹏), Li Yu(俞理), Jian-Wei Huang(黄建伟), Cheng-Tian Lin(林成天), Qiang Gao(高强), Jing Liu(刘静), Guo-Dong Liu(刘国东), Lin Zhao(赵林), Jie Yuan(袁洁), Chuang-Tian Chen(陈创天), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2018, 27(8): 087503.
[8] Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS
Guang-Hao Hong(洪光昊), Cheng-Wei Wang(王成玮), Juan Jiang(姜娟), Cheng Chen(陈成), Sheng-Tao Cui(崔胜涛), Hai-Feng Yang(杨海峰), Ai-Ji Liang(梁爱基), Shuai Liu(刘帅), Yang-Yang Lv(吕洋洋), Jian Zhou(周健), Yan-Bin Chen(陈延彬), Shu-Hua Yao(姚淑华), Ming-Hui Lu(卢明辉), Yan-Feng Chen(陈延峰), Mei-Xiao Wang(王美晓), Le-Xian Yang(杨乐仙), Zhong-Kai Liu(柳仲楷), Yu-Lin Chen(陈宇林). Chin. Phys. B, 2018, 27(1): 017105.
[9] Photoemission study of iron-based superconductor
Liu Zhong-Hao, Cai Yi-Peng, Zhao Yan-Ge, Jia Lei-Lei, Wang Shan-Cai. Chin. Phys. B, 2013, 22(8): 087406.
[10] Post collision interactions and polarization effect in (e, 2e) collisions of helium
Zang Shuang-Shuang, Ge Zi-Ming. Chin. Phys. B, 2012, 21(7): 073403.
No Suggested Reading articles found!