Special Issue:
SPECIAL TOPIC — Topological 2D materials
|
SPECIAL TOPIC—Topological 2D materials |
Prev
Next
|
|
|
Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures |
Weiwu Li(李伟武)1, Konstantin Riegel1, Chuanpu Liu(刘传普)2, Alexey Taskin3, Yoichi Ando3, Zhimin Liao(廖志敏)2, Martin Dressel1, Yuan Yan(严缘)1,4,5 |
1 Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany; 2 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; 3 Physics Institute II, University of Cologne, 50937 Köln, Germany; 4 Physikalisches Institut der Universität Würzburg, 97074 Würzburg, Germany; 5 Institute for Topological Insulators, 97074 Wurzburg, Germany |
|
|
Abstract The surface plasmon polaritons of the topological insulator Bi2Se3 can be excited by using etched grating or grave structures to compensate the wave vector mismatch of the incident photon and plasmon. Here, we demonstrate novel gold grating/Bi2Se3 thin film/sapphire hybrid structures, which allow the excitation of surface plasmon polaritons propagating through nondestructive Bi2Se3 thin film with the help of gold diffractive gratings. Utilizing periodic Au surface structures, the momentum can be matched and the normal-incidence infrared reflectance spectra exhibit pronounced dips. When the width of the gold grating W (with a periodicity 2W) increases from 400 nm to 1500 nm, the resonant frequencies are tuned from about 7000 cm-1 to 2500 cm-1. In contrast to the expected √q dispersion for both massive and massless fermions, where q~π/W is the wave vector, we observe a sound-like linear dispersion even at room temperature. This surface plasmon polaritons with linear dispersion are attributed to the unique noninvasive fabrication method and high mobility of topological surface electrons. This novel structure provides a promising application of Dirac plasmonics.
|
Received: 11 February 2020
Revised: 23 March 2020
Accepted manuscript online:
|
PACS:
|
78.68.+m
|
(Optical properties of surfaces)
|
|
71.35.Cc
|
(Intrinsic properties of excitons; optical absorption spectra)
|
|
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
Fund: Project supported by Carl-Zeiss-Stiftung. |
Corresponding Authors:
Yuan Yan
E-mail: yuan.yan@physik.uni-wuerzburg.de
|
Cite this article:
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘) Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures 2020 Chin. Phys. B 29 067801
|
[1] |
Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
|
[2] |
Qi X L 2008 Phys. Rev. B 78 195424
|
[3] |
Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
|
[4] |
Hsieh D, Xia Y, Qian D, Wray L, Dil J, Meier F, Osterwalder J, Patthey L, Checkelsky J and Ong N 2009 Nature 460 1101
|
[5] |
Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil J, Osterwalder J, Patthey L, Fedorov A and Lin H 2009 Phys. Rev. Lett. 103 146401
|
[6] |
Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
|
[7] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[8] |
Qi X L and Zhang S C 2010 Phys. Today 63 33
|
[9] |
Yan Y, Liao Z M, Yu F, Wu H C, Jing G, Yang Z C, Zhao Q and Yu D 2012 Nanotechnology 23 305704
|
[10] |
Yan, Y, Liao Z, Zhou Y, et al. 2013 Sci. Rep. 3 1264
|
[11] |
Stauber T 2014 J. Condens.: Matter Phys. 26 123201
|
[12] |
Deshko Y, Krusin-Elbaum L, Menon V, Khanikaev A and Trevino J 2016 Opt. Express 24 7398
|
[13] |
Politano A, Viti L and Vitiello M S 2017 APL Mater. 5 035504
|
[14] |
Ginley T, Wang Y, Wang Z and Law S 2018 MRS Commun. 8 782
|
[15] |
Lai Y P, Lin I T, Wu K H and Liu J M 2014 Nanomater. Nanotechnol. 4 13
|
[16] |
Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N and Oh S 2013 Nat. Nanotech. 8 556
|
[17] |
Ou J Y, So J K, Adamo G, Sulaev A, Wang L and Zheludev N I 2014 Nat. Commun. 5 5139
|
[18] |
In C, Sim S, Kim B, Bae H, Jung H, Jang W, Son M, Moon J, Salehi M and Seo S Y 2018 Nano Lett. 18 734
|
[19] |
Grigorenko A, Polini M and Novoselov K 2012 Nat. Photon. 6 749
|
[20] |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A and Shen Y R 2011 Nat. Nanotech. 6 630
|
[21] |
Yan B, Fang J, Qin S, Liu Y, Chen L, Chen S, Li R and Han Z 2017 Chin. Phys. B 26 097802
|
[22] |
Taskin A, Sasaki S, Segawa K and Ando Y 2012 Adv. Mater. 24 5581
|
[23] |
Schubert M, Tiwald T E and Herzinger C M 2000 Phys. Rev. B 61 8187
|
[24] |
Savoia S, Ricciardi A, Crescitelli A, Granata C, Esposito E, Galdi V and Cusano A 2013 Opt. Express 21 23531
|
[25] |
Cao J, Kong Y and Gao S 2018 Opt. Commun. 406 183
|
[26] |
Mikhailov S A 1998 Phys. Rev. B 58 1517
|
[27] |
Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M and Atwater H 2014 Nano Lett. 14 3876
|
[28] |
Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P and Xia F 2013 Nat. Photon. 7 394
|
[29] |
Stauber T, Gómez-Santos G and Brey L 2013 Phys. Rev. B 88 205427
|
[30] |
Poyli M A, Hrtoň M, Nechaev I, Nikitin A Y, Echenique P M, Silkin V M, Aizpurua J and Esteban R 2018 Phys. Rev. B 97 115420
|
[31] |
Raghu S, Chung S B, Qi X L and Zhang S C 2010 Phys. Rev. Lett. 104 116401
|
[32] |
Jia X, Zhang S, Sankar R, Chou F C, Wang W, Kempa K, Plummer E, Zhang J, Zhu X and Guo J 2017 Phys. Rev. Lett. 119 136805
|
[33] |
Politano A, Silkin V, Nechaev I, Vitiello M, Viti L, Aliev Z, Babanly M, Chiarello G, Echenique P and Chulkov E 2015 Phys. Rev. Lett. 115 216802
|
[34] |
Kogar A, Vig S, Thaler A, Wong M, Xiao Y, Reig-i-Plessis D, Cho G, Valla T, Pan Z and Schneeloch J 2015 Phys. Rev. Lett. 115 257402
|
[35] |
Glinka Y D, Babakiray S, Johnson T A, Holcomb M B and Lederman D 2016 Nat. Commun. 7 13054
|
[36] |
Principi A, Asgari R and Polini M 2011 Solid State Commun. 151 1627
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|