Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067801    DOI: 10.1088/1674-1056/ab8a3c
Special Issue: SPECIAL TOPIC — Topological 2D materials
SPECIAL TOPIC—Topological 2D materials Prev   Next  

Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures

Weiwu Li(李伟武)1, Konstantin Riegel1, Chuanpu Liu(刘传普)2, Alexey Taskin3, Yoichi Ando3, Zhimin Liao(廖志敏)2, Martin Dressel1, Yuan Yan(严缘)1,4,5
1 Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany;
2 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
3 Physics Institute II, University of Cologne, 50937 Köln, Germany;
4 Physikalisches Institut der Universität Würzburg, 97074 Würzburg, Germany;
5 Institute for Topological Insulators, 97074 Wurzburg, Germany
Abstract  The surface plasmon polaritons of the topological insulator Bi2Se3 can be excited by using etched grating or grave structures to compensate the wave vector mismatch of the incident photon and plasmon. Here, we demonstrate novel gold grating/Bi2Se3 thin film/sapphire hybrid structures, which allow the excitation of surface plasmon polaritons propagating through nondestructive Bi2Se3 thin film with the help of gold diffractive gratings. Utilizing periodic Au surface structures, the momentum can be matched and the normal-incidence infrared reflectance spectra exhibit pronounced dips. When the width of the gold grating W (with a periodicity 2W) increases from 400 nm to 1500 nm, the resonant frequencies are tuned from about 7000 cm-1 to 2500 cm-1. In contrast to the expected √q dispersion for both massive and massless fermions, where qπ/W is the wave vector, we observe a sound-like linear dispersion even at room temperature. This surface plasmon polaritons with linear dispersion are attributed to the unique noninvasive fabrication method and high mobility of topological surface electrons. This novel structure provides a promising application of Dirac plasmonics.
Keywords:  surface plasmon polaritons      topological insulator      infrared optoelectronics      nanophotonics  
Received:  11 February 2020      Revised:  23 March 2020      Accepted manuscript online: 
PACS:  78.68.+m (Optical properties of surfaces)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  78.66.-w (Optical properties of specific thin films)  
Fund: Project supported by Carl-Zeiss-Stiftung.
Corresponding Authors:  Yuan Yan     E-mail:  yuan.yan@physik.uni-wuerzburg.de

Cite this article: 

Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘) Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures 2020 Chin. Phys. B 29 067801

[1] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[2] Qi X L 2008 Phys. Rev. B 78 195424
[3] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[4] Hsieh D, Xia Y, Qian D, Wray L, Dil J, Meier F, Osterwalder J, Patthey L, Checkelsky J and Ong N 2009 Nature 460 1101
[5] Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil J, Osterwalder J, Patthey L, Fedorov A and Lin H 2009 Phys. Rev. Lett. 103 146401
[6] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[7] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[8] Qi X L and Zhang S C 2010 Phys. Today 63 33
[9] Yan Y, Liao Z M, Yu F, Wu H C, Jing G, Yang Z C, Zhao Q and Yu D 2012 Nanotechnology 23 305704
[10] Yan, Y, Liao Z, Zhou Y, et al. 2013 Sci. Rep. 3 1264
[11] Stauber T 2014 J. Condens.: Matter Phys. 26 123201
[12] Deshko Y, Krusin-Elbaum L, Menon V, Khanikaev A and Trevino J 2016 Opt. Express 24 7398
[13] Politano A, Viti L and Vitiello M S 2017 APL Mater. 5 035504
[14] Ginley T, Wang Y, Wang Z and Law S 2018 MRS Commun. 8 782
[15] Lai Y P, Lin I T, Wu K H and Liu J M 2014 Nanomater. Nanotechnol. 4 13
[16] Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N and Oh S 2013 Nat. Nanotech. 8 556
[17] Ou J Y, So J K, Adamo G, Sulaev A, Wang L and Zheludev N I 2014 Nat. Commun. 5 5139
[18] In C, Sim S, Kim B, Bae H, Jung H, Jang W, Son M, Moon J, Salehi M and Seo S Y 2018 Nano Lett. 18 734
[19] Grigorenko A, Polini M and Novoselov K 2012 Nat. Photon. 6 749
[20] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A and Shen Y R 2011 Nat. Nanotech. 6 630
[21] Yan B, Fang J, Qin S, Liu Y, Chen L, Chen S, Li R and Han Z 2017 Chin. Phys. B 26 097802
[22] Taskin A, Sasaki S, Segawa K and Ando Y 2012 Adv. Mater. 24 5581
[23] Schubert M, Tiwald T E and Herzinger C M 2000 Phys. Rev. B 61 8187
[24] Savoia S, Ricciardi A, Crescitelli A, Granata C, Esposito E, Galdi V and Cusano A 2013 Opt. Express 21 23531
[25] Cao J, Kong Y and Gao S 2018 Opt. Commun. 406 183
[26] Mikhailov S A 1998 Phys. Rev. B 58 1517
[27] Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M and Atwater H 2014 Nano Lett. 14 3876
[28] Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P and Xia F 2013 Nat. Photon. 7 394
[29] Stauber T, Gómez-Santos G and Brey L 2013 Phys. Rev. B 88 205427
[30] Poyli M A, Hrtoň M, Nechaev I, Nikitin A Y, Echenique P M, Silkin V M, Aizpurua J and Esteban R 2018 Phys. Rev. B 97 115420
[31] Raghu S, Chung S B, Qi X L and Zhang S C 2010 Phys. Rev. Lett. 104 116401
[32] Jia X, Zhang S, Sankar R, Chou F C, Wang W, Kempa K, Plummer E, Zhang J, Zhu X and Guo J 2017 Phys. Rev. Lett. 119 136805
[33] Politano A, Silkin V, Nechaev I, Vitiello M, Viti L, Aliev Z, Babanly M, Chiarello G, Echenique P and Chulkov E 2015 Phys. Rev. Lett. 115 216802
[34] Kogar A, Vig S, Thaler A, Wong M, Xiao Y, Reig-i-Plessis D, Cho G, Valla T, Pan Z and Schneeloch J 2015 Phys. Rev. Lett. 115 257402
[35] Glinka Y D, Babakiray S, Johnson T A, Holcomb M B and Lederman D 2016 Nat. Commun. 7 13054
[36] Principi A, Asgari R and Polini M 2011 Solid State Commun. 151 1627
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[3] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[4] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[5] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[6] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[7] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[8] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[9] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[10] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[11] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[12] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[13] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[14] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[15] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
No Suggested Reading articles found!