Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058504    DOI: 10.1088/1674-1056/ab8891
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO

Chao-Jun Wang(王朝骏)1,2, Xun Yang(杨珣)1,2, Jin-Hao Zang(臧金浩)1,2, Yan-Cheng Chen(陈彦成)1,2, Chao-Nan Lin(林超男)1,2, Zhong-Xia Liu(刘忠侠)2, Chong-Xin Shan(单崇新)1,2
1 Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China;
2 Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  It is essential to determine the accumulative ultraviolet (UV) irradiation over a period of time in some cases, such as monitoring UV irradiation to the skin, solar disinfection of water, photoresist exposure, etc. UV colorimetric dosimeters, which use dyes' color change to monitor the amount of UV exposure, have been widely studied. However, the exposure data of these UV colorimetric dosimeters can hardly be converted to digital signals, limiting their applications. In this paper, a UV dosimeter has been proposed and demonstrated based on the persistent photoconductivity (PPC) in zinc oxide microwires (ZnO MWs). The PPC effect usually results in high photoconductivity gain but low response speed, which has been regarded as a disadvantage for photodetectors. However, in this work, the unique characteristics of the PPC effect have been utilized to monitoring the accumulative exposure. We demonstrate that the photocurrent in the ZnO MWs depends on the accumulative UV exposure due to the PPC effect, thus the photocurrent can be utilized to determine the UV accumulation. The dosimeter is immune to visible light and exhibits a photoconductive gain of 2654, and the relative error of the dosimeter is about 10%. This UV dosimeter with electrical output is reusable and convenient to integrate with other electronic devices and may also open a new application area for the PPC effect.
Keywords:  dosimetry      persistent photoconductivity      photodetectors      ultraviolet  
Received:  20 February 2020      Revised:  29 March 2020      Published:  05 May 2020
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  42.79.Pw (Imaging detectors and sensors)  
  61.72.uj (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61804136, U1604263, and U1804155) and China Postdoctoral Science Foundation (Grant Nos. 2018M630829 and 2019T120630).
Corresponding Authors:  Xun Yang, Chong-Xin Shan     E-mail:  yangxun9013@163.com;cxshan@zzu.edu.cn

Cite this article: 

Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新) Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO 2020 Chin. Phys. B 29 058504

[1] Araki H, Kim J, Zhang S, Banks A, Crawford K E, Sheng X, Gutruf P, Shi Y, Pielak R M and Rogers J A 2017 Adv. Funct. Mater. 27 1604465
[2] Humble M B 2010 J. Photochem. Photobiol. B 101 142
[3] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z and Shan C X 2019 J. Mater. Chem. C 7 2557
[4] Mills A, McFarlane M and Schneider S 2006 Anal. Bioanal. Chem. 386 299
[5] Kim J, Salvatore G A, Araki H, Chiarelli A M, Xie Z, Banks A, Sheng X, Liu Y, Lee J W, Jang K I, Heo S Y, Cho K, Luo H, Zimmerman B, Kim J, Yan L, Feng X, Xu S, Fabiani M, Gratton G, Huang Y, Paik U and Rogers J A 2016 Sci. Adv. 2 e1600418
[6] Shan C X, Liu J S, Lu Y J, Li B H, Ling F C C and Shen D Z 2015 Opt. Lett. 40 3041
[7] Li Y, Shi Z F, Lei L Z, Ma Z Z, Zhang F, Li S, Wu D, Xu T T, Li X J, Shan C X and Du G T 2018 ACS Photon. 5 2524
[8] Yang X, Shan C X, Lu Y J, Xie X H, Li B H, Wang S P, Jiang M M and Shen D Z 2016 Opt. Lett. 41 685
[9] Liu Y, Jiang M M, Zhang Z, Li B H, Zhao H, Shan C X and Shen D Z 2018 Nanoscale 10 5678
[10] Kim T, Park S, Kang H K, Jeong K, Bae J, Song J and Cho M H 2018 Appl. Surf. Sci. 458 964
[11] Liu S, Liao Q L, Zhang Z, Zhang X K, Lu S N, Zhou L X, Hong M Y, Kang Z and Zhang Y 2017 Nano Res. 10 3476
[12] Liu K W, Sakurai M, Aono M and Shen D Z 2015 Adv. Funct. Mater. 25 3157
[13] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003
[14] Tian Y, Guo C F, Zhang J and Liu Q 2015 Phys. Chem. Chem. Phys. 17 851
[15] Biswas C, Güneş F, Loc D D, Lim S C, Jeong M S, Pribat D and Lee Y H 2011 Nano Lett. 11 4682
[16] Lu L Z, Jiang X T, Peng H Q, Zeng D and Xie C S 2018 RSC Adv. 8 16455
[17] Du J L, Liao Q L, Hong M Y, Liu B S, Zhang X K, Yu H H, Xiao J K, Gao L, Gao F F, Kang Z, Zhang Z and Zhang Y 2019 Nano Energy 58 85
[18] Zhou C Q, Ai Q, Chen X, Gao X H, Liu K Y and Shen D Z 2019 Chin. Phys. B 28 048503
[19] Liu K K, Li X M, Cheng S B, Zhou R, Liang Y C, Dong L, Shan C X, Zeng H B and Shen D Z 2018 Nanoscale 10 7155
[20] Lu Y J, Shi Z F, Shan C X and Shen D Z 2017 Chin. Phys. B 26 047703
[21] Lin P, Yan X Q, Zhang Z, Shen Y W, Zhao Y G, Bai Z M and Zhang Y 2013 ACS Appl. Mater. Inter. 5 3671
[22] Yang X, Shan C X, Liu Q, Jiang M M, Lu Y J, Xie X H, Li B H and Shen D Z 2018 ACS Photon. 5 1006
[23] Bao R R, Wang C F, Peng Z C, Ma C, Dong L and Pan C F 2017 ACS Photon. 4 1344
[24] Zhang Z, Kang Z, Liao Q L, Zhang X M and Zhang Y 2017 Chin. Phys. B 26 118102
[25] Shi Z F, Sun X G, Wu D, Xu T T, Zhuang S W, Tian Y T, Li X and Du G T 2016 Nanoscale 8 10035
[26] Ni P N, Shan C X, Wang S P, Lu Y J, Li B H and Shen D Z 2015 Appl. Phys. Lett. 107 231108
[27] Zang S P, Wang Y L, Li M Y, Su W, An M Q, Zhang X T and Liu Y C 2018 Chin. Phys. B 27 018503
[28] Liu Z Y, Shen C L, Lou Q, Zhao W B, Wei J Y, Liu K K, Zang J H, Dong L and Shan C X 2020 J. Lumin. 221 117111
[29] Madel M, Huber F, Mueller R, Amann B, Dickel M, Xie Y and Thonke K 2017 J. Appl. Phys. 121 124301
[30] Gao T, Ji Y and Yang Y 2019 Adv. Electron. Mater. 5 1900776
[31] Rana A K, Kumar M, Ban D, Wong C, Yi J and Kim J 2019 Adv. Electron. Mater. 5 1900438
[32] Li H X, Zhang X H, Liu N S, Ding L W, Tao J Y, Wang S L, Su J, Li L Y and Gao Y H 2015 Opt. Express 23 21204
[33] Chen A Q, Zhu H, Wu Y Y, Lou G L, Liang Y F, Li J Y, Chen Z Y, Ren Y H, Gui X C, Wang S P and Tang Z K 2017 ACS Photon. 4 1286
[34] Zhang Q, Qi J J, Li X, Yi F, Wang Z Z and Zhang Y 2012 Appl. Phys. Lett. 101 043119
[35] Yang X, Shan C X, Ni P N, Jiang M M, Chen A Q, Zhu H, Zang J H, Lu Y J and Shen D Z 2018 Nanoscale 10 9602
[36] Shi Z F, Xu T T, Wu D, Zhang Y T, Zhang B L, Tian Y T, Li X and Du G T 2016 Nanoscale 8 9997
[37] Chen A Q, Zhu H, Wu Y Y, Chen M M, Zhu Y, Gui X C and Tang Z K 2016 Adv. Funct. Mater. 26 3696
[38] Hullavarad S, Hullavarad N, Look D and Claflin B 2009 Nanoscale Res. Lett. 4 1421
[39] Laiho R, Poloskin D S, Stepanov Y P, Vlasenko M P, Vlasenko L S and Zakhvalinskii V S 2009 J. Appl. Phys. 106 013712
[40] Liu P, She G W, Liao Z L, Wang Y, Wang Z Z, Shi W S, Zhang X H, Lee S T and Chen D M 2009 Appl. Phys. Lett. 94 063120
[41] Katz O, Garber V, Meyler B, Bahir G and Salzman J 2001 Appl. Phys. Lett. 79 1417
[42] Reparaz J S, Guell F, Wagner M R, Hoffmann A, Cornet A and Morante J R 2011 in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (IEEE, Munich, Germany), p. 1
[1] Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(8): 083301.
[2] High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity
Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔). Chin. Phys. B, 2020, 29(7): 074210.
[3] Analysis of extreme ultraviolet spectra of laser-produced Cd plasmas
Mohammedelnazier Bakhiet, Maogen Su(苏茂根), Shiquan Cao(曹世权), Qi Min(敏琦), Duixiong Sun(孙对兄), Siqi He(何思奇), Lei Wu(吴磊), Chenzhong Dong(董晨钟). Chin. Phys. B, 2020, 29(7): 075203.
[4] Direct Coulomb explosion of N2O2+ induced by monochromatic extreme ultraviolet photons at 38.5 eV
Min Zhang(张敏), B Najjari, Bang Hai(海帮), Dong-Mei Zhao(赵冬梅), Jian-Ting Lei(雷建廷), Da-Pu Dong(董达谱), Shao-Feng Zhang(张少锋), Xin-Wen Ma(马新文). Chin. Phys. B, 2020, 29(6): 063302.
[5] Single-order soft x-ray spectra with spectroscopic photon sieve
Yu-Lin Gao(高宇林), Lai Wei(魏来), Qiang-Qiang Zhang(张强强), Zu-Zua Yang(杨祖华), Wei-Min Zhou(周维民), Lei-Feng Cao(曹磊峰). Chin. Phys. B, 2020, 29(5): 054101.
[6] A 2DEG back-gated graphene/AlGaN deep-ultraviolet photodetector with ultrahigh responsivity
Jinhui Gao(高金辉), Yehao Li(李叶豪), Yuxuan Hu(胡宇轩), Zhitong Wang(王志通), Anqi Hu(胡安琪), and Xia Guo(郭霞)\ccclink. Chin. Phys. B, 2020, 29(12): 128502.
[7] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[8] Analysis of extreme ultraviolet spectral profiles of laser-produced Cr plasmas
L Wu(吴磊), M G Su(苏茂根), Q Min(敏琦), S Q Cao(曹世权), S Q He(何思奇), D X Sun(孙对兄), C Z Dong(董晨钟). Chin. Phys. B, 2019, 28(7): 075201.
[9] Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance
Kang Liu(刘康), Jiwen Zhao(赵继文), Huarui Sun(孙华锐), Huaixin Guo(郭怀新), Bing Dai(代兵), Jiaqi Zhu(朱嘉琦). Chin. Phys. B, 2019, 28(6): 060701.
[10] High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers
Xiao-Qian Du(杜小倩), Chong Li(李冲), Ben Li(黎奔), Nan Wang(王楠), Yue Zhao(赵越), Fan Yang(杨帆), Kai Yu(余凯), Lin Zhou(周琳), Xiu-Li Li(李秀丽), Bu-Wen Cheng(成步文), Chun-Lai Xue(薛春来). Chin. Phys. B, 2019, 28(6): 064208.
[11] Enhanced performance of AlGaN-based ultraviolet light-emitting diodes with linearly graded AlGaN inserting layer in electron blocking layer
Guang Li(李光), Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Jian Jiang(姜健), Xing-Jun Luo(罗幸君), Jia-Qi Guo(郭佳琦), Long-Fei He(贺龙飞), Kang Zhang(张康), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(5): 058502.
[12] Femtosecond enhancement cavity with kilowatt average power
Jin Zhang(张津), Lin-Qiang Hua(华林强), Shao-Gang Yu(余少刚), Zhong Chen(陈忠), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2019, 28(4): 044206.
[13] Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors
Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航). Chin. Phys. B, 2019, 28(4): 047804.
[14] Ultraviolet photodetectors based on wide bandgap oxide semiconductor films
Changqi Zhou(周长祺), Qiu Ai(艾秋), Xing Chen(陈星), Xiaohong Gao(高晓红), Kewei Liu(刘可为), Dezhen Shen(申德振). Chin. Phys. B, 2019, 28(4): 048503.
[15] Photodetectors based on small-molecule organic semiconductor crystals
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜). Chin. Phys. B, 2019, 28(3): 038102.
No Suggested Reading articles found!