Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 056201    DOI: 10.1088/1674-1056/ab8214

Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions

Wei Wang(王威)1, Wen Lei(雷文)1, Xiaojun Zheng(郑晓军)1, Huan Li(黎欢)1, Xin Tang(唐鑫)2, Xing Ming(明星)1
1 College of Science, Guilin University of Technology, Guilin 541004, China;
2 Key Laboratory of New Processing Technology for Nonferrous Metal&Materials, Ministry of Education, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
Abstract  Based on first-principles simulations, we revisit the crystal structures, electronic structures, and structural stability of the layered transition metal dichalcogenides (TMDCs) NbS2, and shed more light on the crucial roles of the van der Waals (vdW) interactions. Theoretically calculated results imply that the vdW corrections are important to reproduce the layered crystal structure, which is significant to correctly describe the electronic structure of NbS2. More interestingly, under hydrostatic pressure or tensile strain in ab plane, an isostructural phase transition from two-dimensional layered structure to three-dimensional bulk in the I4/mmm phase has been uncovered. The abnormal structural transition is closely related to the electronic structure instability and interlayer bonding effects. The interlayer Nb-S distances collapse and the interlayer vdW interactions disappear, concomitant with new covalent bond emerging and increasing coordination number. Present work highlights the significance of the vdW interactions, and provides new insights on the unconventional structural transitions in NbS2, which will attract wide audience working in the hectic field of TMDCs.
Keywords:  NbS2      high pressure      phase transition      van der Waals (vdW) interactions  
Received:  06 February 2020      Revised:  13 March 2020      Published:  05 May 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864008) and Guangxi Natural Science Foundation, China (Grant Nos. 2018GXNSFAA138185 and 2018AD19200). High performance computational resources provided by LvLiang Cloud Computing Center of China and National Supercomputer Center on TianHe-2 are gratefully acknowledged.
Corresponding Authors:  Xing Ming     E-mail:

Cite this article: 

Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星) Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions 2020 Chin. Phys. B 29 056201

[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[3] Ma X, Zhang R, An C, Wu S, Hu X and Liu J 2019 Chin. Phys. B 28 037803
[4] Liu T, Tong L, Huang X and Ye L 2019 Chin. Phys. B 28 017302
[5] Guan Z, Ni S and Hu S 2018 J. Phys. Chem. C 122 6209
[6] Shu H, Wang Y and Sun M 2019 Phys. Chem. Chem. Phys. 21 15760
[7] Cui Z, Ren K, Zhao Y, Wang X, Shu H, Yu J and Sun M 2019 Appl. Surf. Sci. 492 513
[8] Guan Z, Lian C S, Hu S, Ni S, Li J and Duan W 2017 J. Phys. Chem. C 121 3654
[9] Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
[10] Wilson J A, Di Salvo F J and Mahajan S 1974 Phys. Rev. Lett. 32 882
[11] Neto and A H Castro 2001 Phys. Rev. Lett. 86 4382
[12] Leroux M, Le Tacon M, Calandra M, Cario L, Measson M A, Diener P and Rodiere P 2012 Phys. Rev. B 86 155125
[13] Heil C, PoncéS, Lambert H, Schlipf M, Margine E R and Giustino F 2017 Phys. Rev. Lett. 119 087003
[14] Dash J K, Chen L, Dinolfo P H, Lu T M and Wang G C 2015 J. Phys. Chem. C 119 19763
[15] Zhao S, Hotta T, Koretsune T, Watanabe K, Taniguchi T, Sugawara K and Kitaura R 2016 2D Mater. 3 025027
[16] Wang X, Lin J, Zhu Y, Luo C, Suenaga K, Cai C and Xie L 2017 Nanoscale 9 16607
[17] Kozhakhmetov A, Choudhury T H, Al Balushi Z Y, Chubarov M and Redwing J M 2018 J. Cryst. Growth 486 137
[18] Leroux M, Cario L, Bosak A and Rodiere P 2018 Phys. Rev. B 97 195140
[19] Bianco R, Errea I, Monacelli L, Calandra M and Mauri F 2019 Nano Lett. 19 3098
[20] Güller F, Vildosola V L and Llois A M 2016 Phys. Rev. B 93 094434
[21] Tresca C and Calandra M 2019 2D Mater. 6 035041
[22] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B and Narayana C 2018 Phys. Rev. B 97 085107
[23] Naumov P G, ElGhazali M A, Mirhosseini H, Süß V, Morosan E, Felser C and Medvedev S A 2018 J. Phys.-Condes. Matter 30 035401
[24] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
[25] Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T and Lin J F 2014 Nat. Commun. 5 1
[26] Lei W, Cai B, Zhou H, Heymann G, Tan X, Zhang S and Ming X 2019 Nanoscale 11 12317
[27] Carmalt C J, Manning T D, Parkin I P, Peters E S and Hector A L 2004 J. Mater. Chem. 14 290
[28] Jellinek F, Brauer G and Müller H 1960 Nature 185 376
[29] Ge W, Kawahara K, Tsuji M and Ago H 2013 Nanoscale 5 5773
[30] Morosin B 1974 Acta. Crystallogr. B 30 551
[31] Fisher W G and Sienko M J 1980 Inorg. Chem. 19 39
[32] Ehm L, Knorr K and Depmeier W 2002 Z. Krist-Cryst. Mater. 217 522
[33] Jones Jr R E, Shanks H R, Finnemore D K and Morosin B 1972 Phys. Rev. B 6 835
[34] Tissen V G, Osorio M R, Brison J P, Nemes N M, García-Hernández M, Cario L and Suderow H 2013 Phys. Rev. B 87 134502
[35] Xu Y, Liu X and Guo W 2014 Nanoscale 6 12929
[36] Zhou Y, Wang Z, Yang P, Zu X, Yang L, Sun X and Gao F 2012 ACS Nano 6 9727
[37] Liu Z L, Cai L C and Zhang X L 2014 J. Alloy. Compd. 610 472
[38] Gjerding M, Pandey M and Thygesen K 2017 Nat. Commun. 8 15133
[39] Blöchl P E 1994 Phys. Rev. B 50 17953
[40] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.-Condens. Matter 22 022201
[44] Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213
[45] Heil C, Schlipf M and Giustino F 2018 Phys. Rev. B 98 075120
[46] Sirica N, Mo S K, Bondino F, Pis I, Nappini S, Vilmercati P and Vobornik I 2016 Phys. Rev. B 94 075141
[47] Machida T, Kohsaka Y, Iwaya K, Arita R, Hanaguri T, Suzuki R and Iwasa Y 2017 Phys. Rev. B 96 075206
[48] Gjerding M N, Pandey M and Thygesen K S 2017 Nat. Commun. 8 15133
[49] Xiao S L, Yu W Z and Gao S P 2016 Surf. Sci. 653 107
[50] Birch F 1947 Phys. Rev. 71 809
[51] Lei W, Zhang S, Heymann G, Tang X, Wen J, Zheng X and Ming X 2019 J. Mater. Chem. C 7 2096
[52] Zhang S, He J, Zhao Z, Yu D and Tian Y 2019 Chin. Phys. B 28 106104
[53] Wan B, Zhang J, Wu L and Gou H 2019 Chin. Phys. B 28 106201
[54] Zhu T and Gao S P 2014 J. Phys. Chem. C 118 11385
[55] Chen X, Gu Y, Tao G, Pei Y, Wang G and Cui N 2015 J. Mater. Chem. A 3 18898
[56] Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F and Bauer E D 2016 Phys. Rev. B 93 144404
[57] Savin A, Nesper R, Wengert S and Fässler T F 1997 Angew. Chem. Int. Edit 36 1808
[58] Batsanov S 2001 Inorg. Mater. 37 871
[59] Cordero B, Gómez V, Platero-Prats A E, Revés M, Echeverría J, Cremades E and Alvarez S 2008 Dalton Trans. 21 2832
[60] Sun A, Gao S P and Gu G 2019 Phys. Rev. Mater. 3 104604
[61] Zhu L, Wang H, Wang Y, Lv J, Ma Y, Cui Q and Zou G 2011 Phys. Rev. Lett. 106 145501
[1] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[2] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[3] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[6] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[7] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[8] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[9] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[10] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[11] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[12] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[13] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[14] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[15] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
No Suggested Reading articles found!