Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 127203    DOI: 10.1088/1674-1056/ab55d3
RAPID COMMUNICATION Prev   Next  

Coulomb-dominated oscillations in a graphene quantum Hall Fabry-Pérot interferometer

Guan-Qun Zhang(张冠群)1, Li Lin(林立)2, Hailin Peng(彭海琳)2, Zhongfan Liu(刘忠范)2, Ning Kang(康宁)1, Hong-Qi Xu(徐洪起)1,3
1 Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China;
2 Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  

The electronic Fabry-Pérot interferometer operating in the quantum Hall regime may be a promising tool for probing edge state interferences and studying the non-Abelian statistics of fractionally charged quasiparticles. Here we report on realizing a quantum Hall Fabry-Pérot interferometer based on monolayer graphene. We observe resistance oscillations as a function of perpendicular magnetic field and gate voltage both on the electron and hole sides. Their Coulomb-dominated origin is revealed by the positive (negative) slope of the constant phase lines in the plane of magnetic field and gate voltage on the electron (hole) side. Our work demonstrates that the graphene interferometer is feasible and paves the way for the studies of edge state interferences since high-Landau-level and even denominator fractional quantum Hall states have been found in graphene.

Keywords:  graphene      electronic Fabry-Pérot interferometer      quantum Hall effect      edge state interference  
Received:  23 September 2019      Revised:  30 October 2019      Accepted manuscript online: 
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  73.43.-f (Quantum Hall effects)  
  85.35.Ds (Quantum interference devices)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300601 and 2017YFA0303304), the National Natural Science Foundation of China (Grant Nos. 11874071, 11774005, and 11974026), and Beijing Academy of Quantum Information Sciences, China (Grant No. Y18G22).

Corresponding Authors:  Ning Kang, Hong-Qi Xu     E-mail:  nkang@pku.edu.cn;hqxu@pku.edu.cn

Cite this article: 

Guan-Qun Zhang(张冠群), Li Lin(林立), Hailin Peng(彭海琳), Zhongfan Liu(刘忠范), Ning Kang(康宁), Hong-Qi Xu(徐洪起) Coulomb-dominated oscillations in a graphene quantum Hall Fabry-Pérot interferometer 2019 Chin. Phys. B 28 127203

[34] Wang Y, Brar V W, Shytov A V, Wu Q, Regan W, Tsai H Z, Zettl A, Levitov L S and Crommie M F 2012 Nat. Phys. 8 653
[1] Zhang Y, McClure D T, Levenson-Falk E M, Marcus C M, Pfeiffer L N and West K W 2009 Phys. Rev. B 79 241304
[35] Wang Y, Wong D, Shytov A V, Brar V W, Choi S, Wu Q, Tsai H Z, Regan W, Zettl A, Kawakami R K, et al. 2013 Science 340 734
[2] McClure D T, Zhang Y, Rosenow B, Levenson-Falk E M, Marcus C M, Pfeiffer L and West K W 2009 Phys. Rev. Lett. 103 206806
[36] Bai K K, Wei Y C, Qiao J B, Li S Y, Yin L J, Yan W, Nie J C and He L 2015 Phys. Rev. B 92 121405
[3] Willett R L, Pfeiffer L N and West K 2010 Phys. Rev. B 82 205301
[37] Srivastava P K, Arya S, Kumar S and Ghosh S 2017 Phys. Rev. B 96 241407
[4] McClure D, Chang W, Marcus C M, Pfeiffer L and West K 2012 Phys. Rev. Lett. 108 256804
[38] Li J, Lin L, Rui D, Li Q, Zhang J, Kang N, Zhang Y, Peng H, Liu Z and Xu H 2017 ACS Nano 11 4641
[5] Nakamura J, Fallahi S, Sahasrabudhe H, Rahman R, Liang S, Gardner G C and Manfra M J 2019 Nat. Phys. 15 563
[39] Overweg H, Eggimann H, Chen X, Slizovskiy S, Eich M, Pisoni R, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, et al. 2017 Nano Lett. 18 553
[6] Bonderson P, Kitaev A and Shtengel K 2006 Phy. Rev. Lett. 96 016803
[40] Banszerus L, Frohn B, Epping A, Neumaier D, Watanabe K, Taniguchi T and Stampfer C 2018 Nano Lett. 18 4785
[7] Ilan R, Grosfeld E and Stern A 2008 Phys. Rev. Lett. 100 086803
[8] Kitaev A Y 2003 Annals of Physics 303 2
[9] Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[10] Willett R 2013 Rep. Prog. Phys. 76 076501
[11] Datta S 1997 Electronic transport in mesoscopic systems (Cambridge: Cambridge University Press)
[12] Ofek N, Bid A, Heiblum M, Stern A, Umansky V and Mahalu D 2010 Proc. Natl. Acad. Sci. USA 107 5276
[13] Choi H K, Sivan1 I, Rosenblatt1 A, Heiblum M, Umanskyl V and Mahalu1 D 2015 Nat. Commun. 6 7435
[14] Sivan I, Choi1 H K, Park1 J, Rosenblattl A, Gefen1 Y, Mahalul D and Umansky V 2016 Nat. Commun. 7 12184
[15] Zhu Y Y, Bai M M, Zheng S Y, Fan J, Jing X N, Ji Z Q, Yang C L, Liu G T and Lu L 2017 Chin. Phys. Lett. 34 067301
[16] Rosenow B and Halperin B 2007 Phys. Rev. Lett. 98 106801
[17] Halperin B I, Stern A, Neder I and Rosenow B 2011 Phys. Rev. B 83 155440
[18] Camino F, Zhou W and Goldman V 2007 Phys. Rev. B 76 155305
[19] Du X, Skachko I, Duerr F, Luican A and Andrei E Y 2009 Nature 462 192
[20] Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J and Shepard K 2011 Nat. Phys. 7 693
[21] Lin X, Du R and Xie X 2014 Natl. Sci. Rev. 1 564
[22] Amet F, Bestwick A, Williams J, Balicas L, Watanabe K, Taniguchi T and Goldhaber-Gordon D 2015 Nat. Commun. 6 5838
[23] Zibrov A, Spanton E, Zhou H, Kometter C, Taniguchi T, Watanabe K and Young A 2018 Nat. Phys. 14 930
[24] Kim Y, Balram A C, Taniguchi T, Watanabe K, Jain J K and Smet J H 2019 Nat. Phys. 15 154
[25] Lin L, Li J, Ren H, Koh A L, Kang N, Peng H, Xu H Q and Liu Z 2016 ACS Nano 10 2922
[26] Chklovskii D, Shklovskii B I and Glazman L 1992 Phys. Rev. B 46 4026
[27] Aoki N, Da Cunha C, Akis R, Ferry D and Ochiai Y 2005 Phys. Rev. B 72 155327
[28] Huckestein B 1995 Rev. Mod. Phys. 67 357
[29] Ilani S, Martin J, Teitelbaum E, Smet J, Mahalu D, Umansky V and Yacoby A 2004 Nature 427 328
[30] Martin J, Akerman N, Ulbricht G, Lohmann T, Von Klitzing K, Smet J and Yacoby A 2009 Nat. Phys. 5 669
[31] Tóvári E, Makk P, Rickhaus P, Schönenberger C and Csonka S 2016 Nanoscale 8 11480
[32] Hackens B, Martins F, Faniel S, Dutu C A, Sellier H, Huant S, Pala M, Desplanque L, Wallart X and Bayot V 2010 Nat. Commun. 1 39
[33] Novikov D 2007 Appl. Phys. Lett. 91 102102
[34] Wang Y, Brar V W, Shytov A V, Wu Q, Regan W, Tsai H Z, Zettl A, Levitov L S and Crommie M F 2012 Nat. Phys. 8 653
[35] Wang Y, Wong D, Shytov A V, Brar V W, Choi S, Wu Q, Tsai H Z, Regan W, Zettl A, Kawakami R K, et al. 2013 Science 340 734
[36] Bai K K, Wei Y C, Qiao J B, Li S Y, Yin L J, Yan W, Nie J C and He L 2015 Phys. Rev. B 92 121405
[37] Srivastava P K, Arya S, Kumar S and Ghosh S 2017 Phys. Rev. B 96 241407
[38] Li J, Lin L, Rui D, Li Q, Zhang J, Kang N, Zhang Y, Peng H, Liu Z and Xu H 2017 ACS Nano 11 4641
[39] Overweg H, Eggimann H, Chen X, Slizovskiy S, Eich M, Pisoni R, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, et al. 2017 Nano Lett. 18 553
[40] Banszerus L, Frohn B, Epping A, Neumaier D, Watanabe K, Taniguchi T and Stampfer C 2018 Nano Lett. 18 4785
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[14] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!