Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 106103    DOI: 10.1088/1674-1056/ab3f9a
RAPID COMMUNICATION Prev   Next  

Structural and electronic properties of transition-metal chalcogenides Mo5S4 nanowires

Ming-Shuai Qiu(邱明帅)1, Huai-Hong Guo(郭怀红)1, Ye Zhang(张也)1, Bao-Juan Dong(董宝娟)2, Sajjad Ali(阿里.萨贾德)2, Teng Yang(杨腾)2
1 College of Sciences, Liaoning Shihua University, Fushun 113001, China;
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  

Transition-metal chalcogenide nanowires (TMCN) as a viable candidate for nanoscale applications have been attracting much attention for the last few decades. Starting from the rigid building block of M6 octahedra (M=transition metal), depending on the way of connection between M6 and decoration by chalcogenide atoms, multiple types of extended TMCN nanowires can be constructed based on some basic rules of backbone construction proposed here. Note that the well-known Chevrel-phase based M6X6 and M6X9 (X=chalcogenide atom) nanowires, which are among our proposed structures, have been successfully synthesized by experiment and well studied. More interestingly, based on the construction principles, we predict three new structural phases (the cap, edge, and C&E phases) of Mo5S4, one of which (the edge phase) has been obtained by top-down electron beam lithography on two-dimensional MoS2, and the C&E phase is yet to be synthesized but appears more stable than the edge phase. The stability of the new phases of Mo5S4 is further substantiated by crystal orbital overlapping population (COOP), phonon dispersion relation, and thermodynamic calculation. The barrier of the structural transition between different phases of Mo5S4 shows that it is very likely to realize an conversion from the experimentally achieved structure to the most stable C&E phase. The calculated electronic structure shows an interesting band nesting between valence and conduction bands of the C&E Mo5S4 phase, suggesting that such a nanowire structure can be well suitable for optoelectronic sensor applications.

Keywords:  transition-metal      chalcogenide      nanowire  
Received:  09 August 2019      Revised:  23 August 2019      Published:  05 October 2019
PACS:  61.46.-w (Structure of nanoscale materials)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51702146), the College Students' Innovation and Entrepreneurship Projects, China (Grant No. 201710148000072), and Liaoning Province Doctor Startup Fund, China (Grant No. 201601325).

Corresponding Authors:  Huai-Hong Guo, Teng Yang     E-mail:  hhguo@escience.cn;yangteng@imr.ac.cn

Cite this article: 

Ming-Shuai Qiu(邱明帅), Huai-Hong Guo(郭怀红), Ye Zhang(张也), Bao-Juan Dong(董宝娟), Sajjad Ali(阿里.萨贾德), Teng Yang(杨腾) Structural and electronic properties of transition-metal chalcogenides Mo5S4 nanowires 2019 Chin. Phys. B 28 106103

[30] Blöchl P E 1994 Phys. Rev. B 50 17953
[1] Saito R, Dresslhaus G and Dresselhaus M S 1999 Physical Properties of Carbon Nanotubes (London: Imperial College Press)
[31] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[2] Dekker C 1999 Phys. Today 52 22
[32] Perdew J P, Burke K and Ernzerhof M 2996 Phys. Rev. Lett. 77 3865
[3] Lieber C M 1998 Solid State Commun. 107 607
[33] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[4] Hu J, Odom T W and Lieber C M 1999 Acc. Chem. Res. 32 435
[5] Venkataraman L and Lieber C M 1999 Phys. Rev. Lett. 83 5334
[34] Togo A and Tanaka I 2015 Scripta Materialia 108 1
[6] Dresselhaus M S, Dresslhaus G, and Avouris P 2001 Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Berlin: Springer)
[35] Hughbanks T and Hoffmann R 1983 J. Am. Chem. Soc. 105 3528
[7] Yang T, Okano S, Berber S and Tománek D 2006 Phys. Rev. Lett. 96 125502
[36] Dronskowski R and Blöchl P E 1993 The Journal of Physical Chemistry 97 8617
[8] Popov I, Yang T, Berber S, Seifert G and Tománek D 2007 Phys. Rev. Lett. 99 085503
[37] Wang J Z, Yang T, Zhang Z D and Yang, L 2018 Appl. Phys. Lett. 112 213104
[9] Mihailovic D 2009 Progress in Materials Science 54 309
[38] Wang Y, Xiao J, Zhu H, Li Y, et al. 2017 Nature 550 487
[10] Gall P and Gougeon P 2008 Journal of Solid State Chemistry 8 1
[39] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z and Zhang Z D 2018 Nat. Nanotechnol. 13 554
[11] Gall P, Guizouarn T and Gougeon P 2015 Journal of Solid State Chemistry 227 98
[12] Roger Chevrel P, Sergent M and Prigent J 1971 J. Solid State Chem. 3 515
[13] Kibsgaard J, Tuxen A, Levisen M, Lgsgaard E, Gemming S, Seifert G, Lauritsen J V and Besenbacher F 2008 Nano Lett. 8 3928
[14] Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S, Lupini A R, Idrobo J C, Caudel D, Burger A, Ghimire N J, Yan J, Mandrus D G, Pennycook S J and Pantelides S T 2014 Nat. Nanotechnol. 9 436
[15] Guo W and Liu X 2014 Nat. Nanotechnol. 9 413
[16] Nicolosi V, Vrbanic D, Mrzel A, McCauley J, O'Flaherty S, McGuinness C, Compagnini G, Mihailovic D, Blau W J and Coleman J N 2005 The Journal of Physical Chemistry B 109 7124
[17] Yang T, Berber S and Tománek D 2008 Phys. Rev. B 77 165426
[18] He M, Simon A and Duppel V. 2004 Z. Anorg. Allg. Chem. 630 535
[19] Kumar V and Heine V 1984 J. Phys. F: Met. Phys. 14 365
[20] Selte K and Kjekshus A 1963 Acta Chemica Scandinavica 17 2560
[21] Charki F 1997 J. Solid State Chemistry 131 310
[22] Liu X, Xu T, Wu X, Zhang Z, Yu J, Qiu H, Hong J H, Jin C H, Li J X, Wang X R, Sun L T and Guo W 2013 Nat. Commun. 4 1776
[23] Ataca C, Çahin H, Aktürk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
[24] Yang S, Li D, Zhang T, Tao Z and Chen J 2012 J. Phys. Chem. C 116 1307
[25] Li Y, Zhou Z, Zhang S and Chen Z 2008 J. Am. Chem. Soc. 130 16739
[26] Pan H and Zhang Y 2012 J. Phys. Chem. C 116 11752
[27] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
[28] Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602
[29] Dong B, Wang Z, Hung N T, Oganov A, Yang T, Saito R and Zhang Z 2019 Phys. Rev. Materials 3 013405
[30] Blöchl P E 1994 Phys. Rev. B 50 17953
[31] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[32] Perdew J P, Burke K and Ernzerhof M 2996 Phys. Rev. Lett. 77 3865
[33] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[34] Togo A and Tanaka I 2015 Scripta Materialia 108 1
[35] Hughbanks T and Hoffmann R 1983 J. Am. Chem. Soc. 105 3528
[36] Dronskowski R and Blöchl P E 1993 The Journal of Physical Chemistry 97 8617
[37] Wang J Z, Yang T, Zhang Z D and Yang, L 2018 Appl. Phys. Lett. 112 213104
[38] Wang Y, Xiao J, Zhu H, Li Y, et al. 2017 Nature 550 487
[39] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z and Zhang Z D 2018 Nat. Nanotechnol. 13 554
[1] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[2] Nonlinear photoncurrent in transition metal dichalcogenide with warping term under illuminating of light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Yun-Hai Zhang(张运海). Chin. Phys. B, 2021, 30(3): 037301.
[3] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[4] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[5] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
[6] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[7] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[8] Flux-to-voltage characteristic simulation of superconducting nanowire interference device
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2020, 29(9): 098501.
[9] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[10] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[11] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[12] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[13] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[14] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[15] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
No Suggested Reading articles found!