Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087804    DOI: 10.1088/1674-1056/28/8/087804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach

Meng Wang(王梦)1, Shiyao Huang(黄诗瑶)2, Run Hu(胡润)2, Xiaobing Luo(罗小兵)1,2
1 China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China;
2 School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  In this work, we designed the elliptical thermal cloak based on the transformation thermotics. The local entropy generation rate distribution and entransy dissipation rate distribution were obtained, and the total entropy generation and entransy dissipation of different types of elliptical cloaks were evaluated. We used entropy generation approach and entransy dissipation approach to evaluate the performance of the thermal cloak, and heat dissipation analysis was carried out for models with different parameters. Finally, the optimized elliptical thermal cloak with minimum entropy generation and minimum entransy dissipation is found, and some suggestions on optimizing the structure of elliptical thermal cloak were given.
Keywords:  metamaterials      thermal conductivity      entropy  
Received:  10 May 2019      Revised:  11 June 2019      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
  65.40.G- (Other thermodynamical quantities)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51606074 and 51625601) and the Fund from the Ministry of Science and Technology of China (Grant No. 2017YFE0100600).
Corresponding Authors:  Run Hu     E-mail:  hurun@hust.edu.cn

Cite this article: 

Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵) Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach 2019 Chin. Phys. B 28 087804

[1] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[2] Hu R, Xie B, Hu J Y, Chen Q and Luo X B 2015 Europhysics. Lett. 111 54003
[3] Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901
[4] He X and Wu L Z 2013 Appl. Phys. Lett. 102 211912
[5] Ma Y, Lan L, Jiang W, Sun F and He S L 2013 NPG Asia Mater. 5 e73
[6] Ma H, Qu S B, Xu Z, Zhang J Q and Wang J F 2009 Chin. Phys. B 18 28
[7] Liu Y D, Cheng Y H, Hu R and Luo X B 2019 Phys. Lett. A. 383 2296
[8] Kapadia R S and Bandaru P R 2014 Appl. Phys. Lett. 105 233903
[9] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[10] Hu R, Wei X L, Hu J Y and Luo X B 2015 Sci. Rep. 4 3600
[11] Guenneau S and Amra C 2013 Opt. Express 21 6578
[12] Liu Y, Sun F and He S 2016 Opt. Express 24 5683
[13] Li Y, Shen X, Wu Z and Huang J P 2015 Phys. Rev. Lett. 115 195503
[14] Hu R, Zhou S L, Li Y, Lei D Y and Luo X B 2018 Adv. Mater. 30 1707237
[15] Shen X Y and Huang J P 2014 Int. J. Heat. Mass. Transfer 78 1
[16] Xia G, Kou W, Yang L and Du Y C 2017 Chin. Phys. B 26 104403
[17] Hu R, Huang S Y, Wang M, Luo X B, Shiomi J and Qiu C W 2019 Adv. Mater. 31 1807849
[18] Salihoglu O, Uzlu H B, Yakar O, Aas S, Balci O, Kakenov N, Balci S, Olcum S, Suzer S and Kocabas C 2018 Nano. Lett. 18 4541
[19] Jiang W X, Cui T J, Yu G X, Lin X Q, Cheng Q and Chin J Y 2008 J. Phys. D: Appl. Phys. 41 085504
[20] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[21] Bejan A 1979 J. Heat. Transfer 101 718
[22] Bejan A 1997 Int. J. Heat. Mass. Transfer 40 799
[23] Fang M F and Wang Y Y 2018 Chin. Phys. B 27 114207
[24] Cheng X T and Liang X G 2013 Int. J. Heat. Mass. Transfer 64 903
[25] Guo Z Y, Zhu H Y and Liang X G 2007 Int. J. Heat. Mass. Transfer 50 2545
[26] Chen Q, Zhu H, Pan N and Guo Z Y 2011 Proc. R. Soc. A 467 1012
[27] Xu G X, Zhang H C, Zou Q and Jin Y 2017 Int. J. Heat. Mass. Transfer 109 746
[28] Zhang H C, Xu G Q, Yu H Y and Wei Y Q 2017 J. Heat. Transfer 139 054501
[29] Yang T, Huang L, Chen F and Xu W 2013 J. Phys. D: Appl. Phys. 46 305102
[30] Cheng X T and Liang X G 2017 Chin. Phys. B 26 120505
[31] Chen L, Wei S and Sun F 2009 Appl. Phys. 105 094906
[32] Xu G X, Zhang H C, Zhang X and Jin Y 2017 Entropy 19 538
[1] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[2] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[3] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[4] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[5] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[6] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[7] Analysis of overload-based cascading failure in multilayer spatial networks
Min Zhang(张敏), Xiao-Juan Wang(王小娟), Lei Jin(金磊), Mei Song(宋梅), Zhong-Hua Liao(廖中华). Chin. Phys. B, 2020, 29(9): 096401.
[8] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[9] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[10] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[11] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[12] Tighter constraints of multiqubit entanglementin terms of Rényi-α entropy
Meng-Li Guo(郭梦丽), Bo Li(李波), Zhi-Xi Wang(王志玺), Shao-Ming Fei(费少明). Chin. Phys. B, 2020, 29(7): 070304.
[13] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[14] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[15] Reduction of entropy uncertainty for qutrit system under non-Markov noisy environment
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(4): 040306.
No Suggested Reading articles found!