Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 076109    DOI: 10.1088/1674-1056/28/7/076109
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Isostructural phase transition-induced bulk modulus multiplication in dopant-stabilized ZrO2 solid solution

Min Wang(王敏)1, Wen-Shu Shen(沈文舒)1, Xiao-Dong Li(李晓东)2, Yan-Chun Li(李延春)2, Guo-Zhao Zhang(张国召)1, Cai-Long Liu(刘才龙)1, Lin Zhao(赵琳)1, Shu-Peng Lv(吕舒鹏)1, Chun-Xiao Gao(高春晓)1, Yong-Hao Han(韩永昊)1
1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
2 Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The electrical transport properties and structures of Y2O3/ZrO2 solid solution have been studied under high pressure up to 23.2 GPa by means of in situ impedance spectroscopy and x-ray diffraction (XRD) measurements. In the impedance spectra, it can be found that the pressure-dependent resistance of Y2O3/ZrO2 presents two different change trends before and after 13.3 GPa, but the crystal symmetry still remains stable in the cubic structure revealed by the XRD measurement and Rietveld refinement. The pressure dependence of the lattice constant and unit cell volume shows that the Y2O3/ZrO2 solid solution undergoes an isostructural phase transition at 13.1 GPa, which is responsible for the abnormal change in resistance. By fitting the volume data with the Birch–Murnaghan equation of state, we found that the bulk modulus B0 of the Y2O3/ZrO2 solid solution increases by 131.9% from 125.2 GPa to 290.3 GPa due to the pressure-induced isostructural phase transition.

Keywords:  high pressure      x-ray diffraction      crystal structure      Y2O3/ZrO2  
Received:  31 January 2019      Revised:  14 May 2019      Published:  05 July 2019
PACS:  61.05.cp (X-ray diffraction)  
  61.50.-f (Structure of bulk crystals)  
  91.60.Gf (High-pressure behavior)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0305900) and the National Natural Science Foundation of China (Grant Nos. 11774126, 11774174, 1674404, and 51772125).

Corresponding Authors:  Yong-Hao Han     E-mail:  hanyh@jlu.edu.cn

Cite this article: 

Min Wang(王敏), Wen-Shu Shen(沈文舒), Xiao-Dong Li(李晓东), Yan-Chun Li(李延春), Guo-Zhao Zhang(张国召), Cai-Long Liu(刘才龙), Lin Zhao(赵琳), Shu-Peng Lv(吕舒鹏), Chun-Xiao Gao(高春晓), Yong-Hao Han(韩永昊) Isostructural phase transition-induced bulk modulus multiplication in dopant-stabilized ZrO2 solid solution 2019 Chin. Phys. B 28 076109

[1] Tang Z J, Li R and Yin J 2013 Chin. Phys. B 22 067702
[2] Bell B D C, Murphy S T, Burr P A, Grimes R W and Wenman M R 2015 J. Appl. Phys. 117 084901
[3] Wang J Y, Zhai W, Jin K X and Chen C L 2011 Chin. Phys. B 20 097202
[4] Teterycz H, Klimkiewicz R and Łaniecki M 2003 Appl. Catal. A Gen. 249 313
[5] Calderon-Moreno J M and Yoshimura M 2002 Solid State Ion. 154-155 125
[6] Yamaguchi T 1994 Catal. Today 20 199
[7] Li J, Zhou X M and Li J B 2008 Rev. Sci. Instrum. 79 123107
[8] Dolan D H and Ao T 2008 Appl. Phys. Lett. 93 021908
[9] Yoo C S, Holmes N C, Ross M, Webb D J and Pike C 1993 Phys. Rev. Lett. 70 3931
[10] Borik M A, Bublik V T, Kulebyakin A V, Lomonova E E, Milovich F O, Myzina V A, Osiko V V, Seryakov S V and Tabachkova N Y 2013 Phys. Solid State 55 1690
[11] Chen D J and Mayo M J 1993 Nanostruct. Mater. 2 469
[12] Hahn H 1993 Nanostruct. Mater. 2 251
[13] Mondal P, Klein A, Jaegermann W and Hahn H 1999 Solid State Ion. 118 331
[14] Tuller H L 2000 Solid State Ion. 131 143
[15] Strickler D W and Carlson W G 1965 J. Am. Ceram. Soc. 48 286
[16] Hirano M, Watanabe S, Kato E, Mizutani Y, Kawai M and Nakamura Y 2004 J. Am. Ceram. Soc. 82 2861
[17] Winnubst A J A, Groot Zevert W F M, Theunissen G S A M and Burggraaf A J 1989 Mater. Sci. Eng. A 109 215
[18] Qi Z M, Shi C S, Wei Y G, Wang Z, Liu T, Hu T D, Zhao Z Y and Li F L 2001 J. Phys.: Condens. Matter 13 11503
[19] Zhang L J, Wang Y C, Lv J and Ma Y M 2017 Nat. Rev. Mater. 2 17005
[20] Zhu P W, Tao Q, Wang L, He Z and Cui T 2018 Chin. Phys. B 27 076103
[21] Desgreniers S and Lagarec K 1999 Phys. Rev. B 59 8467
[22] Haines J, Léger J M, Hull S, Petitet J P, Pereira A S, Perottoni C A and da Jornada J A H 2005 J. Am. Ceram. Soc. 80 1910
[23] Yu X H, Li F F, Han Y H, Hong F, Jin C Q, He Z and Zhou Q 2018 Chin. Phys. B 27 070701
[24] He C Y, Gao C X, Ma Y Z, Li M, Hao A M, Huang X W, Liu B B, Zhang D M, Yu C L, Zou G T, Li Y C, Li H, Li X D and Liu J 2007 Appl. Phys. Lett. 91 092124
[25] Han Y H, Gao C X, Ma Y Z, Liu H W, Pan Y W, Luo J F, Li M, He C Y, Huang X W, Zou G T, Li Y C, Li X D and Liu J 2005 Appl. Phys. Lett. 86 064104
[26] Wang Q L, Liu C L, Gao Y, Ma Y Z, Han Y H and Gao C X 2015 Appl. Phys. Lett. 106 132902
[27] Piermarini G J, Block S, Barnett J D and Forman R A 1975 J. Appl. Phys. 46 2774
[28] Yang J M, Gan X S, Zhao Y, Cui M Q, Zhu T, Zhao Y D, Sun L J, Zheng Lei, Yan F, Hu Z M, Wei M X, Zhang J Y and Yi R Q 2011 Chin. Phys. B 20 010705
[29] Huang N K, Colligon J S, Kheyrandish H and Tang Y S 1993 Nucl. Instr. Meth. B 80-81 1101
[30] Majumdar D and Chatterjee D 1991 J. Appl. Phys. 70 988
[31] Ingo G M and Marletta G 1996 Nucl. Instr. Meth. B 116 440
[32] Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D and Lin J F 2014 Nat. Commun. 5 3731
[33] Matsuoka T and Shimizu K 2009 Nature 458 186
[34] Al-Khatatbeh Y, Lee K K M and Kiefer B 2010 Phys. Rev. B 81 214102
[35] Yang J, Zhu F, Zhang Q, Wu Y, Wu X, Qin S, Dong J C and Chen D L 2013 Chin. Phys. Lett. 30 046101
[36] Fan D W, Wei S Y, Liu J, Li Y C and Xie H S 2011 Chin. Phys. Lett. 28 076101
[1] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[2] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[3] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[4] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[5] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[6] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[7] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[8] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[9] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[10] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[11] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[12] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[13] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§. Chin. Phys. B, 2020, 29(10): 108102.
[14] A new technology for controlling in-situ oxygen fugacity in diamond anvil cells and measuring electrical conductivity of anhydrous olivine at high pressures and temperatures
Wen-Shu Shen(沈文舒), Lei Wu(吴雷), Tian-Ji Ou(欧天吉), Dong-Hui Yue(岳冬辉), Ting-Ting Ji(冀婷婷), Yong-Hao Han(韩永昊), Wen-Liang Xu(许文良), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2020, 29(1): 010702.
[15] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
No Suggested Reading articles found!