Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 067402    DOI: 10.1088/1674-1056/28/6/067402

Enhancing superconductivity of ultrathin YBa2Cu3O7-δ films by capping non-superconducting oxides

Hai Bo(薄海)1, Tianshuang Ren(任天爽)1, Zheng Chen(陈峥)1, Meng Zhang(张蒙)1, Yanwu Xie(谢燕武)1,2
1 Interdisciplinary Center of Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

In this study, we have explored the ways to fabricate and optimize high-quality ultrathin YBa2Cu3O7-δ (YBCO) films grown on single-crystal (001) SrTiO3 substrates. Nearly atomic-flat YBCO films are obtained by pulsed laser deposition. Our result shows that the termination of SrTiO3 has only a negligible effect on the properties of YBCO. In contrast, we found that capping a non-superconducting oxide layer can generally enhance the superconductivity of YBCO. PrBa2Cu3O7, La2CuO4, LaMnO3, SrTiO3, and LaAlO3 have been examined as capping layers, and the minimum thickness of superconducting YBCO with capping is~2 unit cells-3 unit cells. This result might be useful in constructing good-performance YBCO-based field effect devices.

Keywords:  YBa2Cu3O7-δ (YBCO)      superconductivity      oxides      film  
Received:  21 February 2019      Revised:  05 April 2019      Accepted manuscript online: 
PACS:  74.72.-h (Cuprate superconductors)  
  74.78.-w (Superconducting films and low-dimensional structures)  

Project supported by the National Key Research and Development Program of the Ministry of Science and Technology of China (Grants Nos. 2017YFA0303002 and 2016YFA0300204) and the Fundamental Research Funds for the Central Universities, China.

Corresponding Authors:  Yanwu Xie     E-mail:

Cite this article: 

Hai Bo(薄海), Tianshuang Ren(任天爽), Zheng Chen(陈峥), Meng Zhang(张蒙), Yanwu Xie(谢燕武) Enhancing superconductivity of ultrathin YBa2Cu3O7-δ films by capping non-superconducting oxides 2019 Chin. Phys. B 28 067402

[1] Tao X and Jian X 2017 Physics 46 514 (in Chinese)
[2] Ren M Q, Yan Y J, Zhang T and Feng D L 2016 Chin. Phys. Lett. 33 127402
[3] Terashima T, Shimura K, Bando Y, Matsuda Y, Fujiyama A and Komiyama S 1991 Phys. Rev. Lett. 67 1362
[4] Norton D P and Lowndes D H 1993 Appl. Phys. Lett. 63 1432
[5] Triscone J M, Fischer, Brunner L, Antognazza L and Kent A D 1990 Phys. Rev. Lett. 64 804
[6] Lowndes D H, Norton D P and Budai J D 1990 Phys. Rev. Lett. 65 1160
[7] Li Q, Xi X X, Wu X D, Inam A, Vadlamannati S, McLean W L, Venkatesan T, Ramesh R, Hwang D M, Martinez J A and Nazar L 1990 Phys. Rev. Lett. 64 3086
[8] Chan I N, Vier D C, Hasen J, Guimpel J, Schultz S and Schuller I K 1993 Phys. Lett. A 175 241
[9] Kwon C, Li Q, Takeuchi I, Warburton P A, Doughty C, Mao S N, Xi X X and Venkatesan T 1996 Physica C 266 75
[10] Mannhart J 1996 Supercond. Sci. Technol. 9 49
[11] Ahn C H, Triscone J M and Mannhart J 2003 Nature 424 1015
[12] Arpaia R, Golubev D, Baghdadi R, Ciancio R, DraŽić G, Orgiani P, Montemurro D, Bauch T and Lombardi F 2017 Phys. Rev. B 96 064525
[13] Mannhart J, Bednorz J G, Müller K A and Schlom D G 1991 Z. Phys. B: Condens. Matter 83 307
[14] Mannhart J, Schlom D G, Bednorz J G and Muller K A 1991 Phys. Rev. Lett. 67 2099
[15] Matthey D, Reyren N, Triscone J M and Schneider T 2007 Phys. Rev. Lett. 98 057002
[16] Xi X X, Li Q, Doughty C, Kwon C, Bhattacharya S, Findikoglu A T and Venkatesan T 1991 Appl. Phys. Lett. 59 3470
[17] Kawahara T, Suzuki T, Komai E, Nakazawa K, Terashima T and Bando Y 1996 Physica C: Supercond. 266 149
[18] Crassous A, Bernard R, Fusil S, Bouzehouane K, Briatico J, Bibes M, Barthelemy A and Villegas J E 2013 J. Appl. Phys. 113 024910
[19] Ahn C H, Gariglio S, Paruch P, Tybell T, Antognazza L and Triscone J M 1999 Science 284 1152
[20] Crassous A, Bernard R, Fusil S, Bouzehouane K, Le Bourdais D, Enouz-Vedrenne S, Briatico J, Bibes M, Barthélémy A and Villegas J E 2011 Phys. Rev. Lett. 107 247002
[21] Horide T, Matsufuji T and Matsumoto K 2015 IEEE Trans. Appl. Supercond. 25 1800204
[22] Fête A, Rossi L, Augieri A and Senatore C 2016 Appl. Phys. Lett. 109 192601
[23] Leng X, Garcia-Barriocanal J, Bose S, Lee Y and Goldman A M 2011 Phys. Rev. Lett. 107 027001
[24] Khanof S, Mannhart J and Boschker H 2018 Appl. Phys. Lett. 113 022605
[25] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
[26] Ohtomo A and Hwang H Y 2004 Nature 427 423
[27] Wang X R, Li C J, Lü W M, Paudel T R, Leusink D P, Hoek M, Poccia N, Vailionis A, Venkatesan T, Coey J M D, Tsymbal E Y, Ariando and Hilgenkamp H 2015 Science 349 716
[28] Huijben M, Koster G, Blank D H A and Rijnders G 2008 Phase Transit. 81 703
[29] Zhai H Y and Chu W K 2000 Appl. Phys. Lett. 76 3469
[30] Wu J, Pelleg O, Logvenov G, Bollinger A T, Sun Y J, Boebinger G S, Vanević M, Radović Z and Božović I 2013 Nat. Mater. 12 877
[31] Zhang M, Chen Z, Mao B, Li Q, Bo H, Ren T, He P, Liu Z and Xie Y 2018 Phys. Rev. Mater. 2 065002
[32] Sefrioui Z, Varela M, Peña V, Arias D, León C, Santamaría J, Villegas J E, Martínez J L, Saldarriaga W and Prieto P 2002 Appl. Phys. Lett. 81 4568
[1] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[6] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[7] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[8] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[9] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
[10] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[11] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[12] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[13] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[14] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[15] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
No Suggested Reading articles found!