Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 067401    DOI: 10.1088/1674-1056/28/6/067401

Crystal structures and sign reversal Hall resistivities in iron-based superconductors Lix(C3H10N2)0.32FeSe (0.15 < x < 0.4)

Rui-Jin Sun(孙瑞锦)1,2, Shi-Feng Jin(金士锋)1,3, Jun Deng(邓俊)1,2, Mu-Nan Hao(郝木难)1,2, Lin-Lin Zhao(赵琳琳)1,2, Xiao Fan(范晓)1,2, Xiao-Ning Sun(孙晓宁)1,2, Jian-Gang Guo(郭建刚)1,2, Lin Gu(谷林)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China

Heavy electron-doped FeSe-derived materials have attracted attention due to their uncommon electronic structures with only ‘electron pockets’, and they are different from other iron-based superconductors. Here, we report the crystal structures, superconductivities and normal state properties of two new Li-doped FeSe-based materials, i.e., Li0.15(C3H10N2)0.32FeSe (P-4) and Lix(C3H10N2)0.32FeSe (P4/nmm, 0.25 < x < 0.4) with superconducting transition temperatures ranging from 40 K to 46 K. The determined crystal structures reveal a coupling between Li concentration and the orientation of 1,3-diaminopropane molecules within the largely expanded FeSe layers. Superconducting fluctuations appear in the resistivity of the two superconductors and are fitted in terms of the quasi two-dimensional (2D) Lawrence-Doniach model. The existence of a crossing point and scaling behavior in the T-dependence of diamagnetic response also suggests that the two superconductors belong to the quasi-2D system. Interestingly, with the increase of temperature, a sign of Hall coefficient (RH) reversing from negative to positive is observed at~185 K in both phases, suggesting that ‘hole pockets’ emerge in these electron-doped FeSe materials. First principle calculations indicate that the increase in FeSe layer distance will lift up a ‘hole band’ associated with dx2-y2 character and increase the hole carriers. Our findings suggest that the increase in two dimensionalities may lead to the sign-reversal Hall resistivity in Lix(C3H10N2)0.32FeSe at high temperature.

Keywords:  superconductor      Lawrence-Doniach model      dimensionality  
Received:  08 March 2019      Revised:  10 April 2019      Accepted manuscript online: 
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.70.Xa (Pnictides and chalcogenides)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 51472266, 51532010, 91422303, and 51772323), the National Key Research and Development Program of China (Grant No. 2016YFA0300301), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH013).

Corresponding Authors:  Shi-Feng Jin, Lin Gu     E-mail:;

Cite this article: 

Rui-Jin Sun(孙瑞锦), Shi-Feng Jin(金士锋), Jun Deng(邓俊), Mu-Nan Hao(郝木难), Lin-Lin Zhao(赵琳琳), Xiao Fan(范晓), Xiao-Ning Sun(孙晓宁), Jian-Gang Guo(郭建刚), Lin Gu(谷林) Crystal structures and sign reversal Hall resistivities in iron-based superconductors Lix(C3H10N2)0.32FeSe (0.15 < x < 0.4) 2019 Chin. Phys. B 28 067401

[1] Xu Y M, Huang Y B, Cui X, Razzoli Y E, Radovic M, Shi M, Chen G F, Zheng P, Wang N L, Zhang C L, Dai P C, Hu J P, Wang Z and Ding H 2011 Nat. Phys. 7 198
[2] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
[3] Wang F and Lee D H 2011 Science 332 200
[4] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X and Xue Q K 2011 Science 332 1410
[5] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki, Wang K Z, Wen J, Gu G D, Ding H and Shin S 2018 Science 360 182
[6] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520
[7] Qian T, Wang X P, Jin W C, Zhang P, Richard, Xu P G, Dai X, Fang Z, Guo J G, Chen X L and Ding H 2011 Phys. Rev. Lett. 106 187001
[8] Shi X, Han Z Q, Peng X L, Richard P, Qian T, Wu X X, Qiu M W, Wang S C, Hu J P, Sun Y J and Ding H 2017 Nat. Commun. 8 14988
[9] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
[10] Ren M, Yan Y, Niu X, Tao R, Hu D, Peng R, Xie B, Zhao J, Zhang T and Feng D L 2017 Sci. Adv. 3 e1603228
[11] Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Zhou X, Liu F K, Lu Z, Zhao Z, Chen C, Xu Z and Zhou X J 2016 Nat. Commun. 7 10608
[12] McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C and Cava R J 2009 Phys. Rev. Lett. 103 057002
[13] Sun S, Wang S, Yu R and Lei H 2017 Phys. Rev. B 96 064512
[14] Lei H, Graf D, Hu R, Ryu H, Choi E S, Tozer S W and Petrovic C 2012 Phys. Rev. B 85 094515
[15] Margadonna S, Takabayashi Y, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M and Prassides K 2009 Phys. Rev. B 80 064506
[16] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi, Casper S F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630
[17] Sun J P, Ye G Z, Shahi P, Yan J Q, Matsuura K, Kontani H, Zhang G M, Zhou Q, Sales B C, Shibauchi T, Uwatoko Y, Singh D J and Cheng J G 2017 Phys. Rev. Lett. 118 147004
[18] Ding X, Pan Y, Yang H and Wen H H 2014 Phys. Rev. B 89 224515
[19] Lei B, Xiang Z J, Lu X F, Wang N Z, Chang J R, Shang C, Zhang A M, Zhang Q M, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. B 93 060501
[20] Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F and Zhao Z 2015 Phys. Rev. B 92 064515
[21] Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko, Xing Y G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X and Cheng J G 2018 Nat. Commun. 9 380
[22] Zhao W, Li M, Chang C Z, Jiang J, Wu L J, Liu C X, Jagadeesh S, Moodera, Zhu Y M and Chan H W 2018 Sci. Adv. 4 eaao2682
[23] Dewald R R and Dye J L 1964 J. Phys. Chem. 68 122
[24] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[25] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J and Clarke S J 2013 Nat. Mater. 12 15
[28] Ying T P, Chen X L, Wang G, Jin S F, Lai X F, Zhou T T, Zhang H, Shen S J and Wang W Y 2013 J. Am. Chem. Soc. 135 2951
[29] Young V G, McKelvy M J, Glaunsinger W S and Dreele von R B 1988 Solid State Ion. 26 47
[30] Sóñora D, Carballeira C, Ponte J J, Xie T, Luo H Q, Li S L and Mosqueira J 2017 Phys. Rev. B 96 014516
[31] Rey R I, Carballeira C, Mosqueira J, Salem-Sugui S, Alvarenga A D, Luo H Q, Lu X Y, Chen Y C and Vidal F 2013 Supercond Sci. Technol. 26 055004
[32] Hikami S and Larkin A I 1988 Mod. Phys. Lett. B 2 693
[33] Kes P H, Beek van der C J, Maley M P, McHenry M E, Huse D A, Menken M J V and Menovsky A A 1991 Phys. Rev. Lett. 67 2383
[34] Lang M, Steglich F, Toyota N and Sasaki T 1994 Phys. Rev. B 49 15227
[35] Welp U, Fleshler S, Kwok W K, Klemm R A, Vinokur V M, Downey J, Veal B and Crabtree G W 1991 Phys. Rev. Lett. 67 3180
[36] Du Z Y, Yang X, Altenfeld D, Gu Q Q, Yang H, Eremin I, Hirschfeld P J, Mazin I I, Lin H, Zhu X Y and Wen H H 2018 Nat. Phys. 14 134
[37] Subedi Alaska, Zhang L J, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
[38] Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K and Takahashi T 2014 Phys. Rev. Lett. 113 237001
[39] Huang D, Song C L, Webb T A, Fang S, Chang C Z, Moodera J S, Kaxiras E and Hoffman J E 2015 Phys. Rev. Lett. 115 017002
[40] Li C H, Sun S S, Wang S H and Lei H C 2017 Phys. Rev. B 96 134503
[41] Hrovat M M, Jeglic P, Klanjsek M, Hatakeda T, Noji T, Tanabe Y, Urata T, Huynh K K, Koike Y, Tanigaki K and Arcon D 2015 Phys. Rev. B 92 094513
[42] Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G and Shen Z X 2017 Phys. Rev. Lett. 118 067002
[1] Chiral symmetry protected topological nodal superconductingphase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[2] Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors
Ping Gao(高平), Wan-Min Yang(杨万民), Ting-Ting Wu(武婷婷), Miao Wang(王妙), and Kun Liu(刘坤). Chin. Phys. B, 2023, 32(2): 027401.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[5] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[6] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[7] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[8] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[9] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[10] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[11] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[12] Designing current-strain-assisted superconductor-ferromagnet multi-bit memories
Hasnain Mehdi Jafri, Jing Wang(王静), Xiao-Ming Shi(施小明), De-Shan Liang(梁德山), and Hou-Bing Huang(黄厚兵). Chin. Phys. B, 2022, 31(11): 118501.
[13] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[14] Optical study on topological superconductor candidate Sr-doped Bi2Se3
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
[15] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
No Suggested Reading articles found!