Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 044201    DOI: 10.1088/1674-1056/28/4/044201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer

Xiangxian Wang(王向贤)1, Jiankai Zhu(朱剑凯)1, Huan Tong(童欢)1, Xudong Yang(杨旭东)1, Xiaoxiong Wu(吴枭雄)1, Zhiyuan Pang(庞志远)1, Hua Yang(杨华)1, Yunping Qi(祁云平)2
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
2 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  

A plasmonic refractive index (RI) sensor with high RI sensitivity based on a gold composite structure is proposed. This composite structure is constructed from a perfect gold nano-disk square array on a gold film, with a SiO2 spacer. The reflection spectra of the composite structure, with analyte RI in the range of 1.30 to 1.40, are theoretically studied using the finite-difference time-domain method. The incident light beam is partly coupled to the localized surface plasmons (LSP) of the single nano-disks and partly transferred to the propagating surface plasmons (PSP) by grating coupling. The reflectivity is nearly zero at the valley of the reflection spectrum because of the strong coupling between LSP and PSP. Also, the full width at half maximum (FWHM) of one of the surface plasmon polaritons (SPPs) modes is very narrow, which is helpful for RI sensing. An RI sensitivity as high as 853 nm/RIU is obtained. The influence of the structure parameters on the RI sensitivity and the sensor figure of merit (FOM) are investigated in detail. We find that the sensor maintains high RI sensitivity over a large range of periods and nano-disk diameters. Results of the theoretical simulation of the composite structure as a plasmonic sensor are promising. Thus, this composite structure could be extensively applied in the fields of biology and chemistry.

Keywords:  plasmonic sensor      refractive index      sensitivity      FOM  
Received:  30 October 2018      Revised:  09 January 2019      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  42.70.-a (Optical materials)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61865008 and 61505074), the Undergraduate Innovation Training Program of Gansu Province, China (Grant No. DC2018002), and the Undergraduate Innovation Training Program of Lanzhou University of Technology (Grant No. DC2018004).

Corresponding Authors:  Xiangxian Wang     E-mail:  wangxx869@126.com

Cite this article: 

Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平) A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer 2019 Chin. Phys. B 28 044201

[1] Hou W and Cronin S B 2013 Adv. Funct. Mater. 23 1612
[2] Yan Y, Yang H, Zhao X, Li R and Wang X 2018 Mater. Res. Bull. 105 286
[3] Zhao X, Yang H, Li S, Cui Z and Zhang C 2018 Mater. Res. Bull. 107 180
[4] Zheng C and Yang H 2018 J. Mater. Sci. Mater. Electron. 29 9291
[5] Ye Y, Yang H, Zhang H and Jiang J 2018 Environ. Technol.
[6] Chen Y, Wang X, Wang R, Yang H and Qi Y 2017 Chin. Phys. B 26 054203
[7] Wang X, Tong H, Pang Z, Zhu J, Wu X, Yang H and Qi Y 2019 Opt. Quantum Electron. 51 38
[8] Pang Z, Tong H, Wu X, Zhu J, Wang X, Yang H and Qi Y 2018 Opt. Quantum Electron. 50 335
[9] Yang Z J, Jiang R, Zhuo X, Xie Y M, Wang J and Lin H Q 2017 Phys. Rep. 701 1
[10] Wang J, Lu C, Hu Z, Chen C, Pan L and Ding W 2018 Opt. Express 26 23221
[11] Chen J, Yi Z, Xiao S and Xu X 2018 Mater. Res. Express 5 015605
[12] Liu L, Chen J, Zhou Z, Yi Z and Ye X 2018 Mater. Res. Express 5 045802
[13] Yu M, Huang Z, Liu Z, Chen J, Liu Y, Tang L and Liu G 2018 Sens. Actuators B Chem. 262 845
[14] Liu G, Yu M, Liu Z, Liu X and Huang S 2015 Nanotechnology 26 185702
[15] Wang X, Bai X, Pang Z, Yang H, Qi Y and Wen X 2019 Acta Phys. Sin. 68 037301 (in Chinese)
[16] Du H, Zhang L and Li D 2018 Plasma Sci. Technol. Pap. 20 115001
[17] Li D, Zhang L and Du H 2019 Plasma Sci. Technol. 21 045002
[18] Safari S and Jazi B 2018 Plasmonics 13 1449
[19] Cennamo N, D'Agostino G, Doná A, Dacarro G, Pallavicini P, Pesavento M and Zeni L 2013 Sens. (Switzerland) 13 14676
[20] Law W, Yong K, Baev A and Prasad P N 2011 ACS Nano 5 4858
[21] Petryayeva E and Krull U J 2011 Anal. Chim. Acta 706 8
[22] Kim J A, Hwang T, Dugasani S R, Amin R, Kulkarni A, Park S H and Kim T 2013 Sens. Actuators B Chem. 187 426
[23] Qu S, Song C, Xia X, Liang X, Tang B, Hu Z and Wang J 2016 Sensors 16 784
[24] Liu C, Wang F, Lv J, Sun T, Liu Q, Fu C, Mu H and Chu P K 2016 Opt. Commun. 359 378
[25] Wang F, Sun Z, Sun T, Liu C, Chu P K and Bao L 2018 J. Opt. 47 288
[26] Im H, Shao H, Il Y, Peterson V M, Castro C M, Weissleder R and Lee H 2014 Nat. Biotechnol. 32 490
[27] Pallarola D, Schneckenburger M, Spatz J P and Pacholski C 2013 Chem. Commun. 49 8326
[28] Coskun A F, Cetin A E, Galarreta B C, Alvarez D A, Altug H and Ozcan A 2014 Sci. Rep. 4 6789
[29] Wang X, Bai X, Pang Z, Yang H and Qi Y 2019 Results Phys. 12 1866
[30] Li J, Zhao Y, Hu H, Wang Q and Zhang J 2015 Optik (Stuttg). 126 199
[31] Wang X, Wu X, Chen Y, Bai X, Pang Z, Yang H, Qi Y and Wen X 2018 AIP Adv. 8 105029
[32] Byun K M, Kim S J and Kim D 2007 Appl. Opt. 46 5703
[33] Mayer K M, Hafner J H and À A 2011 Chem. Rev. 111 3828
[34] Nusz G J, Marinakos S M, Curry A C, Dahlin A, Höök F, Wax A and Chilkoti A 2008 Anal. Chem. 80 984
[35] Dondapati S K, Sau T K, Hrelescu C, Klar T A, Stefani F D and Feldmann J 2010 ACS Nano 4 6318
[36] Huang C, Ye J, Wang S, Stakenborg T and Lagae L 2012 Appl. Phys. Lett. 100 173114
[37] Zhang Z, Wang L, Hu H, Li K, Ma X and Song G 2013 Chin. Phys. B 22 104213
[38] Wang S, Sun X, Ding M, Peng G, Qi Y, Wang Y and Ren J 2018 J. Phys. D: Appl. Phys. 51 405101
[39] Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D and Yu Y 2017 Opt. Express 25 3675
[40] Chen J, Zhang T, Tang C, Mao P, Liu Y, Yu Y and Liu Z 2016 IEEE Photon. Technol. Lett. 28 1529
[41] Cen C, Chen J, Liang C, Huang J, Chen X, Tang Y, Yi Z, Xu X, Yi Y and Xiao S 2018 Physica E 103 93
[42] Zhang X, Qi Y, Zhou P, Gong H, Hu B and Yan C 2018 Photonic Sens. 8 367
[43] Qi Y, Zhang X, Zhou P, Hu B and Wang X 2018 Acta Phys. Sin. 67 197301 (in Chinese)
[44] Wang J, Sun L, Hu Z, Liang X and Liu C 2014 AIP Adv. 4 123006
[45] Wang J, Song C, Hang J, Hu Z and Zhang F 2017 Opt. Express 25 23880
[46] Cen Chunlian, Lin H, Huang J, Liang C, Chen X, Tang Y, Yi Z, Ye X, Liu J, Yi Y and Xiao S 2018 Sensors 18 4489
[47] Liang C, Niu G, Chen X, Zhou Z, Yi Z, Ye X, Duan T, Yi Y and Xiao S 2019 Opt. Commun. 436 57
[48] Liu Z, Liu G, Huang S, Liu X, Pan P, Wang Y and Gu G 2015 Sens. Actuators B Chem. 215 480
[49] Yang Z J 2016 J. Phys. Chem. C 120 21843
[50] Yang Z J, Zhao Q and He J 2017 Opt. Express 25 15927
[51] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[52] Yi Z, Liu M, Luo J, Zhao Y, Zhang W, Yi Y, Yi Y, Duan T, Wang C and Tang Y 2017 Opt. Commun. 390 1
[53] Cesario J 2005 Opt. Lett. 30 3404
[54] Chu Y and Crozier K B 2009 Opt. Lett. 34 244
[55] Zhou F, Liu Y and Cai W 2014 Opt. Lett. 39 1302
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[4] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[5] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[6] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[7] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[8] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[9] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[10] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[11] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[12] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[13] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[14] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[15] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
No Suggested Reading articles found!