Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 044201    DOI: 10.1088/1674-1056/28/4/044201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer

Xiangxian Wang(王向贤)1, Jiankai Zhu(朱剑凯)1, Huan Tong(童欢)1, Xudong Yang(杨旭东)1, Xiaoxiong Wu(吴枭雄)1, Zhiyuan Pang(庞志远)1, Hua Yang(杨华)1, Yunping Qi(祁云平)2
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
2 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  

A plasmonic refractive index (RI) sensor with high RI sensitivity based on a gold composite structure is proposed. This composite structure is constructed from a perfect gold nano-disk square array on a gold film, with a SiO2 spacer. The reflection spectra of the composite structure, with analyte RI in the range of 1.30 to 1.40, are theoretically studied using the finite-difference time-domain method. The incident light beam is partly coupled to the localized surface plasmons (LSP) of the single nano-disks and partly transferred to the propagating surface plasmons (PSP) by grating coupling. The reflectivity is nearly zero at the valley of the reflection spectrum because of the strong coupling between LSP and PSP. Also, the full width at half maximum (FWHM) of one of the surface plasmon polaritons (SPPs) modes is very narrow, which is helpful for RI sensing. An RI sensitivity as high as 853 nm/RIU is obtained. The influence of the structure parameters on the RI sensitivity and the sensor figure of merit (FOM) are investigated in detail. We find that the sensor maintains high RI sensitivity over a large range of periods and nano-disk diameters. Results of the theoretical simulation of the composite structure as a plasmonic sensor are promising. Thus, this composite structure could be extensively applied in the fields of biology and chemistry.

Keywords:  plasmonic sensor      refractive index      sensitivity      FOM  
Received:  30 October 2018      Revised:  09 January 2019      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  42.70.-a (Optical materials)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61865008 and 61505074), the Undergraduate Innovation Training Program of Gansu Province, China (Grant No. DC2018002), and the Undergraduate Innovation Training Program of Lanzhou University of Technology (Grant No. DC2018004).

Corresponding Authors:  Xiangxian Wang     E-mail:  wangxx869@126.com

Cite this article: 

Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平) A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer 2019 Chin. Phys. B 28 044201

[1] Hou W and Cronin S B 2013 Adv. Funct. Mater. 23 1612
[2] Yan Y, Yang H, Zhao X, Li R and Wang X 2018 Mater. Res. Bull. 105 286
[3] Zhao X, Yang H, Li S, Cui Z and Zhang C 2018 Mater. Res. Bull. 107 180
[4] Zheng C and Yang H 2018 J. Mater. Sci. Mater. Electron. 29 9291
[5] Ye Y, Yang H, Zhang H and Jiang J 2018 Environ. Technol.
[6] Chen Y, Wang X, Wang R, Yang H and Qi Y 2017 Chin. Phys. B 26 054203
[7] Wang X, Tong H, Pang Z, Zhu J, Wu X, Yang H and Qi Y 2019 Opt. Quantum Electron. 51 38
[8] Pang Z, Tong H, Wu X, Zhu J, Wang X, Yang H and Qi Y 2018 Opt. Quantum Electron. 50 335
[9] Yang Z J, Jiang R, Zhuo X, Xie Y M, Wang J and Lin H Q 2017 Phys. Rep. 701 1
[10] Wang J, Lu C, Hu Z, Chen C, Pan L and Ding W 2018 Opt. Express 26 23221
[11] Chen J, Yi Z, Xiao S and Xu X 2018 Mater. Res. Express 5 015605
[12] Liu L, Chen J, Zhou Z, Yi Z and Ye X 2018 Mater. Res. Express 5 045802
[13] Yu M, Huang Z, Liu Z, Chen J, Liu Y, Tang L and Liu G 2018 Sens. Actuators B Chem. 262 845
[14] Liu G, Yu M, Liu Z, Liu X and Huang S 2015 Nanotechnology 26 185702
[15] Wang X, Bai X, Pang Z, Yang H, Qi Y and Wen X 2019 Acta Phys. Sin. 68 037301 (in Chinese)
[16] Du H, Zhang L and Li D 2018 Plasma Sci. Technol. Pap. 20 115001
[17] Li D, Zhang L and Du H 2019 Plasma Sci. Technol. 21 045002
[18] Safari S and Jazi B 2018 Plasmonics 13 1449
[19] Cennamo N, D'Agostino G, Doná A, Dacarro G, Pallavicini P, Pesavento M and Zeni L 2013 Sens. (Switzerland) 13 14676
[20] Law W, Yong K, Baev A and Prasad P N 2011 ACS Nano 5 4858
[21] Petryayeva E and Krull U J 2011 Anal. Chim. Acta 706 8
[22] Kim J A, Hwang T, Dugasani S R, Amin R, Kulkarni A, Park S H and Kim T 2013 Sens. Actuators B Chem. 187 426
[23] Qu S, Song C, Xia X, Liang X, Tang B, Hu Z and Wang J 2016 Sensors 16 784
[24] Liu C, Wang F, Lv J, Sun T, Liu Q, Fu C, Mu H and Chu P K 2016 Opt. Commun. 359 378
[25] Wang F, Sun Z, Sun T, Liu C, Chu P K and Bao L 2018 J. Opt. 47 288
[26] Im H, Shao H, Il Y, Peterson V M, Castro C M, Weissleder R and Lee H 2014 Nat. Biotechnol. 32 490
[27] Pallarola D, Schneckenburger M, Spatz J P and Pacholski C 2013 Chem. Commun. 49 8326
[28] Coskun A F, Cetin A E, Galarreta B C, Alvarez D A, Altug H and Ozcan A 2014 Sci. Rep. 4 6789
[29] Wang X, Bai X, Pang Z, Yang H and Qi Y 2019 Results Phys. 12 1866
[30] Li J, Zhao Y, Hu H, Wang Q and Zhang J 2015 Optik (Stuttg). 126 199
[31] Wang X, Wu X, Chen Y, Bai X, Pang Z, Yang H, Qi Y and Wen X 2018 AIP Adv. 8 105029
[32] Byun K M, Kim S J and Kim D 2007 Appl. Opt. 46 5703
[33] Mayer K M, Hafner J H and À A 2011 Chem. Rev. 111 3828
[34] Nusz G J, Marinakos S M, Curry A C, Dahlin A, Höök F, Wax A and Chilkoti A 2008 Anal. Chem. 80 984
[35] Dondapati S K, Sau T K, Hrelescu C, Klar T A, Stefani F D and Feldmann J 2010 ACS Nano 4 6318
[36] Huang C, Ye J, Wang S, Stakenborg T and Lagae L 2012 Appl. Phys. Lett. 100 173114
[37] Zhang Z, Wang L, Hu H, Li K, Ma X and Song G 2013 Chin. Phys. B 22 104213
[38] Wang S, Sun X, Ding M, Peng G, Qi Y, Wang Y and Ren J 2018 J. Phys. D: Appl. Phys. 51 405101
[39] Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D and Yu Y 2017 Opt. Express 25 3675
[40] Chen J, Zhang T, Tang C, Mao P, Liu Y, Yu Y and Liu Z 2016 IEEE Photon. Technol. Lett. 28 1529
[41] Cen C, Chen J, Liang C, Huang J, Chen X, Tang Y, Yi Z, Xu X, Yi Y and Xiao S 2018 Physica E 103 93
[42] Zhang X, Qi Y, Zhou P, Gong H, Hu B and Yan C 2018 Photonic Sens. 8 367
[43] Qi Y, Zhang X, Zhou P, Hu B and Wang X 2018 Acta Phys. Sin. 67 197301 (in Chinese)
[44] Wang J, Sun L, Hu Z, Liang X and Liu C 2014 AIP Adv. 4 123006
[45] Wang J, Song C, Hang J, Hu Z and Zhang F 2017 Opt. Express 25 23880
[46] Cen Chunlian, Lin H, Huang J, Liang C, Chen X, Tang Y, Yi Z, Ye X, Liu J, Yi Y and Xiao S 2018 Sensors 18 4489
[47] Liang C, Niu G, Chen X, Zhou Z, Yi Z, Ye X, Duan T, Yi Y and Xiao S 2019 Opt. Commun. 436 57
[48] Liu Z, Liu G, Huang S, Liu X, Pan P, Wang Y and Gu G 2015 Sens. Actuators B Chem. 215 480
[49] Yang Z J 2016 J. Phys. Chem. C 120 21843
[50] Yang Z J, Zhao Q and He J 2017 Opt. Express 25 15927
[51] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[52] Yi Z, Liu M, Luo J, Zhao Y, Zhang W, Yi Y, Yi Y, Duan T, Wang C and Tang Y 2017 Opt. Commun. 390 1
[53] Cesario J 2005 Opt. Lett. 30 3404
[54] Chu Y and Crozier K B 2009 Opt. Lett. 34 244
[55] Zhou F, Liu Y and Cai W 2014 Opt. Lett. 39 1302
[1] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[2] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[3] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[4] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[5] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[6] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[7] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[8] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[9] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[10] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[11] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[12] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[13] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[14] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[15] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
No Suggested Reading articles found!