Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 028501    DOI: 10.1088/1674-1056/28/2/028501
Special Issue: SPECIAL TOPIC — Photodetector: Materials, physics, and applications
SPECIAL TOPIC—Photodetector: Materials, physics, and applications Prev   Next  

Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies

Yan-Fang Zhang(张彦芳)1,2, Xuan-Hu Chen(陈选虎)1, Yang Xu(徐阳)1, Fang-Fang Ren(任芳芳)1,3, Shu-Lin Gu(顾书林)1,3, Rong Zhang(张荣)1,3, You-Dou Zheng(郑有炓)1,3, Jian-Dong Ye(叶建东)1,3
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Wuxi Institute of Technology, Wuxi 214121, China;
3 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Abstract  

We report on the transition of photovoltaic and photoconductive operation modes of the amorphous Ga2O3-based solar-blind photodetectors in metal-semiconductor-metal (MSM) configurations. The conversion from Ohmic to Schottky contacts at Ti/Ga2O3 interface is realized by tuning the conductivity of amorphous Ga2O3 films with delicate control of oxygen flux in the sputtering process. The abundant donor-like oxygen vacancies distributed near the Ti/Ga2O3 interface fascinate the tunneling process across the barrier and result in the formation of Ohmic contacts. As a consequence, the serious sub-gap absorption and persistent photoconductivity (PPC) effect degrades the performance of the photoconductive detectors. In contrast, the photovoltaic device with a Schottky contact exhibits an ultra-low dark current less than 1 pA, a high detectivity of 9.82×1012 cm·Hz1/2·W-1, a fast response time of 243.9 μs, and a high ultraviolet C (UVC)-to-ultraviolet A (UVA) rejection ratio of 103. The promoting performance is attributed primarily to the reduction of the sub-gap states and the resultant suppression of PPC effect. With simple architecture, low fabrication cost, and easy fusion with modern high-speed integrated circuitry, these results provide a cost-effective way to realize high performance solar-blind photodetectors towards versatile practical applications.

Keywords:  amorphous gallium oxide      solar-blind photodetector      photovoltaic      photoconductive  
Received:  28 October 2018      Revised:  10 December 2018      Accepted manuscript online: 
PACS:  85.60.-q (Optoelectronic devices)  
  68.55.ag (Semiconductors)  
  73.40.Mr (Semiconductor-electrolyte contacts)  
  71.55.Ak (Metals, semimetals, and alloys)  
Fund: 

Project supported by the National Key Research and Development Project, China (Grant No. 2017YFB0403003), the National Natural Science Foundation of China (Grant Nos. 61774081, 61322403, and 91850112), the State Key Research and Development Project of Jiangsu Province, China (Grant No. BE2018115), Shenzhen Fundamental Research Project, China (Grant Nos. 201773239 and 201888588), the Project of the State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices, China (Grant No. 2017KF001), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 021014380093 and 021014380085).

Corresponding Authors:  Jian-Dong Ye     E-mail:  yejd@nju.edu.cn

Cite this article: 

Yan-Fang Zhang(张彦芳), Xuan-Hu Chen(陈选虎), Yang Xu(徐阳), Fang-Fang Ren(任芳芳), Shu-Lin Gu(顾书林), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东) Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies 2019 Chin. Phys. B 28 028501

[1] Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
[2] Pearton S J, Yang J, Cary I V P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
[3] Shao Z G, Chen D J, Lu H, Zhang R, Cao D P, Luo W J, Zheng Y D, Li L and Li Z H 2014 IEEE Electron Dev. Lett. 35 372
[4] Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X and Shen D Z 2014 Appl. Phys. Lett. 105 011117
[5] Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L and Shan C X 2018 J. Mater. Chem. C 6 5727
[6] Cui S J, Mei Z X, Zhang Y H, Liang H L and Du X L 2017 Adv. Opt. Mater. 5 1700454
[7] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photon. 4 2203
[8] Wu Z P, Bai G X, Qu Y Y, Guo D Y, Li L H, Li P G, Hao J H and Tang W H 2016 Appl. Phys. Lett. 108 211903
[9] López I, Castaldini A, Cavallini A, Nogales E, Méndez B and Piqueras J 2014 J. Phys. D: Appl. Phys. 47 415101
[10] Lany S and Zunger A 2007 Phys. Rev. Lett. 98 045501
[11] Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L and Li Y R 2016 Opt. Mater. 51 203
[12] Deak P, Ho Q D, Seemann F, Aradi B, Lorke M and Frauenheim T 2017 Phys. Rev. B 95 075208
[13] Heinemann M D, Berry J, Teeter G, Unold T and Ginley D 2016 Appl. Phys. Lett. 108 022107
[14] Xian F L, Ye J D, Gu S L, Tan H H and Jagadish C 2016 Appl. Phys. Lett. 109 023109
[15] Nomura K, Kamiya T, Yanagi H, Ikenaga E, Yang K, Kobayashi K, Hirano M and Hosono H 2008 Appl. Phys. Lett. 92 202117
[16] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G and Tang W H 2014 Appl. Phys. Lett. 105 023507
[17] Omura Y, Mori Y, Sato S and Mallik A 2018 J. Appl. Phys. 123 161549
[18] Chiu F C 2014 Adv. Mater. Sci. Eng. 7 1
[19] Chen X H, Xu Y, Zhou D, Yang S, Ren F F, Lu H, Tang K, Gu S L, Zhang R, Zheng Y D and Ye J D 2017 ACS Appl. Mater. Interfaces 9 36997
[20] Jacopin G, De Luna Bugallo A, Rigutti L, Lavenus P, Julien F H, Lin Y, Tu L and Tchernycheva M 2014 Appl. Phys. Lett. 104 023116
[21] Kong W Y, Wu G A, Wang K Y, Zhang T F, ZouY F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725
[22] Mock A, Korlacki R, Briley C, Darakchieva V, Monemar B, Kumagai Y, Goto K, Higashiwaki M and Schubert M 2017 Phys. Rev. B 96 245205
[23] Holst J C, Hoffmann A, Rudloff D, Bertram F, Riemann T, Christen J, Frey T, As D J, Schikora D and Lischka K 2000 Appl. Phys. Lett. 76 2832
[24] Pophristic M, Long F H, Tran C, Ferguson I T and Karlicek R F 1998 Appl. Phys. Lett. 73 3550
[25] Bartel T, Dworzak M, Strassburg M, Hoffmann A, Strittmatter A and Bimberg D 2004 Appl. Phys. Lett. 85 1946
[26] Cazzanelli M and Pavesi L 1997 Phys. Rev. B 56 15264
[27] An Y H, Guo D Y, Li S Y, Wu Z P, Huang Y Q, Li P G, Li L H and Tang W H 2016 J. Phys. D: Appl. Phys. 49 285111
[28] Zhang D K, Sheng Y, Wang J Y, Gao F, Yan S C, Wang J Z, Pan L J, Wan Q and Shi Y 2017 Opt. Commun. 15 72
[29] Zhao B, Wang F, Chen H Y, Wang Y P, Jiang M M, Fang X S and Zhao D X 2015 Nano Lett. 15 3988
[30] Nathan A, Lee S, Jeon S and Robertson J 2014 J. Disp. Technol. 10 917
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[3] GeSn (0.524 eV) single-junction thermophotovoltaic cells based on the device transport model
Xin-Miao Zhu(朱鑫淼), Min Cui(崔敏), Yu Wang(汪宇), Tian-Jing Yu(于添景),Jin-Xiang Deng(邓金祥), and Hong-Li Gao(高红丽). Chin. Phys. B, 2022, 31(5): 058801.
[4] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[5] Defect physics of the quasi-two-dimensional photovoltaic semiconductor GeSe
Saichao Yan(闫赛超), Jinchen Wei(魏金宸), Shanshan Wang(王珊珊), Menglin Huang(黄梦麟), Yu-Ning Wu(吴宇宁), and Shiyou Chen(陈时友). Chin. Phys. B, 2022, 31(11): 116103.
[6] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[7] Electrostatic force of dust deposition originating from contact between particles and photovoltaic glass
Xing-Cai Li(李兴财), Juan Wang(王娟), and Guo-Qing Su(苏国庆). Chin. Phys. B, 2021, 30(10): 104101.
[8] Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri. Chin. Phys. B, 2020, 29(9): 098801.
[9] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[10] Generation and manipulation of bright spatial bound-soliton pairs under the diffusion effect in photovoltaic photorefractive crystals
Ze-Xian Zhang(张泽贤), Xiao-Yang Zhao(赵晓阳), Ye Li(李烨), Hu Cui(崔虎)†, Zhi-Chao Luo(罗智超), Wen-Cheng Xu(徐文成), and Ai-Ping Luo(罗爱平). Chin. Phys. B, 2020, 29(10): 104208.
[11] New design of ferroelectric solar cell combined with luminescent solar concentrator
Slimane Latreche, Mohamed Fathi, Abderrahmane Kadri. Chin. Phys. B, 2019, 28(8): 088801.
[12] Tunable 2H-TaSe2 room-temperature terahertz photodetector
Jin Wang(王瑾), Cheng Guo(郭程), Wanlong Guo(郭万龙), Lin Wang(王林), Wangzhou Shi(石旺舟), Xiaoshuang Chen(陈效双). Chin. Phys. B, 2019, 28(4): 046802.
[13] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[14] Recent advances in Ga-based solar-blind photodetectors
Ming-sheng Xu(徐明升), Lei Ge(葛磊), Ming-ming Han(韩明明), Jing Huang(黄静), Hua-yong Xu(徐化勇), Zai-xing Yang(杨再兴). Chin. Phys. B, 2019, 28(2): 028502.
[15] Preparation of Ga2O3 thin film solar-blind photodetectors based on mixed-phase structure by pulsed laser deposition
Y M Lu(吕有明), C Li(李超), X H Chen(陈相和), S Han(韩瞬), P J Cao(曹培江), F Jia(贾芳), Y X Zeng(曾玉祥), X K Liu(刘新科), W Y Xu(许望颖), W J Liu(柳文军), D L Zhu(朱德亮). Chin. Phys. B, 2019, 28(1): 018504.
No Suggested Reading articles found!