Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104208    DOI: 10.1088/1674-1056/abab7a

Generation and manipulation of bright spatial bound-soliton pairs under the diffusion effect in photovoltaic photorefractive crystals

Ze-Xian Zhang(张泽贤), Xiao-Yang Zhao(赵晓阳), Ye Li(李烨), Hu Cui(崔虎)†, Zhi-Chao Luo(罗智超), Wen-Cheng Xu(徐文成), and Ai-Ping Luo(罗爱平)
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices & Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510006, China

The generation and propagation characteristics of bright spatial bound-soliton pairs (BSPs) are investigated under the diffusion effect in photovoltaic photorefractive crystals by numerical simulation. The results show that two coherent solitons, one as the signal light and the other as the control light, can form a BSP when the peak intensity of the control light is appropriately selected. Moreover, under the diffusion effect, the BSP experiences a self-bending process during propagating and the center of the BSP moves on a parabolic trajectory. Furthermore, the lateral shift of the BSP at the output face of the crystal can be manipulated by adjusting the peak intensity of the control light. The research results provide a method for the design of all-optical switching and routing based on the manipulation of the lateral position of BSPs.

Keywords:  solitons      photovoltaic photorefractive      diffusion effect  
Received:  12 May 2020      Revised:  15 June 2020      Accepted manuscript online:  01 August 2020
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.-k (Nonlinear optics)  
Corresponding Authors:  Corresponding author. E-mail:   
About author: 
†Corresponding author. E-mail:
* Project supported by the National Natural Science Foundation of China (Grant Nos. 61875058, 11874018, 11974006, and 61378036).

Cite this article: 

Ze-Xian Zhang(张泽贤), Xiao-Yang Zhao(赵晓阳), Ye Li(李烨), Hu Cui(崔虎)†, Zhi-Chao Luo(罗智超), Wen-Cheng Xu(徐文成), and Ai-Ping Luo(罗爱平) Generation and manipulation of bright spatial bound-soliton pairs under the diffusion effect in photovoltaic photorefractive crystals 2020 Chin. Phys. B 29 104208

Fig. 1.  

Intensity FWHM of bright solitons versus A.

Fig. 2.  

(a) Sum of squares of deviations from mean D as a function of A2 for the cases of θ = π (solid curve) and θ = 0 (dashed curve). Panel (b) is enlargement of (a) in the vertical direction.

Fig. 3.  

Intensity contours showing the propagation dynamics of two out of phase solitons for A1 = 0.1 and A2 = 0.1 (a), 0.163 (b), 0.176 (c), 0.181 (d), 0.214 (e), 0.231 (f), 0.251 (g), 0.258 (h), 0.28 (i).

Fig. 4.  

Relation (a) between propagation distance ξ and the spacing, and (b) between ξ and the peak intensity for two anti-phase solitons.

Fig. 5.  

Intensity contours showing the propagation dynamics of two in-phase solitons for A1 = 0.1 and A2 = 0.1 (a), 0.139 (b), 0.196 (c), and 0.253 (d).

Fig. 6.  

Relation (a) between propagation distance ξ and the spacing, and (b) between ξ and the peak intensity for two in-phase solitons.

Weerasekara G, Maruta A 2017 IEEE Photon. J. 9 7903612 DOI: 10.1109/JPHOT.2017.2697902
Wang Y F, Tian B, Jiang Y 2017 Appl. Math. Comput. 292 448 DOI: 10.1016/j.amc.2016.07.025
Zhao X H, Tian B, Chai J, Wu X Y, Guo Y J 2017 Eur. Phys. J. Plus 132 192 DOI: 10.1140/epjp/i2017-11453-5
Kudlinski A, Wang S F, Mussot A, Conforti M 2015 Opt. Lett. 40 2142 DOI: 10.1364/OL.40.002142
Yang C Y, Li W Y, Yu W T, Liu M L, Zhang Y J, Ma G L, Lei M, Liu W J 2018 Nonlinear Dyn. 92 203 DOI: 10.1007/s11071-018-4049-9
Liu R, Li J Z 2018 Results Phys. 11 436 DOI: 10.1016/j.rinp.2018.09.030
Li M M, Cheng L H, Wu J, Lai X J, Wang Y Y 2019 Chin. Phys. B 28 120502 DOI: 10.1088/1674-1056/ab5188
Lai X J, Cai X O, Zhang J F 2015 Chin. Phys. B 24 070503 DOI: 10.1088/1674-1056/24/7/070503
Chen W J, Ju Y, Liu C Y, Wang L K, Lu K Q 2018 Chin. Phys. B 27 114216 DOI: 10.1088/1674-1056/27/11/114216
Lan Z Z, Hu W Q, Guo B L 2019 Appl. Math. Modell. 73 695 DOI: 10.1016/j.apm.2019.04.013
Lan Z Z, Su J J 2019 Nonlinear Dyn. 96 2535 DOI: 10.1007/s11071-019-04939-1
Longobucco M, Cimek J, Čurilla L, Pysz D, Buczyński R, Bugár I 2019 Opt. Fiber Technol. 51 48 DOI: 10.1016/j.yofte.2019.04.009
Soysouvanh S, Phongsanam P, Mitatha S, Ali J, Yupapin P, Amiri I S, Grattan K T V, Yoshida M 2019 Microsyst. Technol. 25 431 DOI: 10.1007/s00542-018-4011-2
Ghadi A, Sohrabfar S 2018 IEEE Photon. Technol. Lett. 30 569 DOI: 10.1109/LPT.2018.2805769
Laudyn U A, Piccardi A, Kwasny M, Karpierz M A, Assanto G 2018 Opt. Lett. 43 2296 DOI: 10.1364/OL.43.002296
Banerjee A, Roy S 2018 Phys. Rev. A 98 033806 DOI: 10.1103/PhysRevA.98.033806
Biswas A, Triki H, Zhou Q, Moshokoa S P, Ullah M Z, Belic M 2017 Optik 144 357 DOI: 10.1016/j.ijleo.2017.07.008
Katti A 2018 Appl. Phys. B 124 192 DOI: 10.1007/s00340-018-7056-0
Katti A 2018 Opt. Quantum Electron. 50 263 DOI: 10.1007/s11082-018-1524-y
Cai X, Liu J S, Wang S L, Liu S X 2009 Chin. Phys. B 18 1891 DOI: 10.1088/1674-1056/18/5/029
Shwetanshumala S, Konar S 2010 Phys. Scr. 82 045404 DOI: 10.1088/0031-8949/82/04/045404
Pu S Z, Chen M, Li Y J, Zhang L Y 2019 Opt. Commun. 450 78 DOI: 10.1016/j.optcom.2019.05.065
Saravanan M, Jagtap A D, Vasudeva M A S 2018 Chaos Solitons Fractal. 106 220 DOI: 10.1016/j.chaos.2017.11.022
Morin M, Duree G, Salamo G, Segev M 1995 Opt. Lett. 20 2066 DOI: 10.1364/OL.20.002066
Lu K Q, Zhang M Z, Zhao W, Yang Y L, Yang Y, Zhang Y H, Liu X M, Zhang Y P, Song J P 2006 Chin. Phys. Lett. 23 2770 DOI: 10.1088/0256-307X/23/10/040
Zheng C Z, Luo M Q, Lin G, Cui H, Luo A P 2017 Opt. Commun. 387 95 DOI: 10.1016/j.optcom.2016.11.033
Yan L F, Jin Q L, Zhang D, Zhang Y J 2011 Opt. Commun. 284 1682 DOI: 10.1016/j.optcom.2010.11.057
Yan L F, Wang H C, She W L 2006 Acta Phys. Sin. 55 5257 in Chinese DOI: 10.7498/aps.55.5257
Zhu W T, Cui H, Luo A P, Luo Z C, Xu W C 2016 J. Opt. Soc. Am. B 33 2209 DOI: 10.1364/JOSAB.33.002209
Ciattoni A, DelRe E, Marini A, Rizza C 2008 Opt. Express 16 10867 DOI: 10.1364/OE.16.010867
Ciattoni A, DelRe E, Rizza C, Marini A 2008 Opt. Lett. 33 2110 DOI: 10.1364/OL.33.002110
Cui H, Zhang B Z, She W L 2008 J. Opt. Soc. Am. B 25 1756 DOI: 10.1364/JOSAB.25.001756
She W L, Lee K K, Lee W K 1999 Phys. Rev. Lett. 83 3182 DOI: 10.1103/PhysRevLett.83.3182
She W L, Lee K K, Lee W K 2000 Phys. Rev. Lett. 85 2498 DOI: 10.1103/PhysRevLett.85.2498
Uzunov I M, Stoev V D, Tzoleva T I 1993 Opt. Commun. 97 307 DOI: 10.1016/0030-4018(93)90494-P
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[3] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[4] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[5] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[6] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[7] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[8] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[9] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[10] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[11] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[12] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[13] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[14] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
[15] Generation of breathing solitons in the propagation and interactions of Airy-Gaussian beams in a cubic-quintic nonlinear medium
Weijun Chen(陈卫军), Ying Ju(鞠莹), Chunyang Liu(刘春阳), Liankai Wang(王连锴), Keqing Lu(卢克清). Chin. Phys. B, 2018, 27(11): 114216.
No Suggested Reading articles found!