Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078704    DOI: 10.1088/1674-1056/ab8c42
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode

Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成)
Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
Abstract  We present a high-performance terahertz (THz) radiation source based on the photon-activated charge domain (PACD) quenched mode of GaAs photoconductive antennas (GaAs PCA). The THz radiation characteristics of the GaAs PCA under different operating modes are studied. Compared with the linear mode, the intensity of THz wave radiated by the GaAs PCA can be greatly enhanced due to the avalanche multiplication effect of carriers in the PACD quenched mode. The results show that when the carrier multiplication ratio is 16.92, the peak-to-peak value of THz field radiated in the PACD quenched mode increases by as much as about 4.19 times compared to the maximum values in the linear mode.
Keywords:  photoconductive antenna      terahertz time-domain spectroscopy      photon-activated charge domain quenched mode  
Received:  27 March 2020      Revised:  16 April 2020      Accepted manuscript online: 
PACS:  78.47.J- (Ultrafast spectroscopy (<1 psec))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0701005), the National Natural Science Foundation of China (Grant Nos. 61427814 and 51807161), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JZ-04).
Corresponding Authors:  Wei Shi     E-mail:

Cite this article: 

Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成) A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode 2020 Chin. Phys. B 29 078704

[1] Auston D H, Cheung K P and Smith P R 1984 Appl. Phys. Lett. 45 284
[2] Smith P R and Auston D H 1988 IEEE J. Quantum Electron. 24 255
[3] Liu G, Chang C, Qiao Z, Wu K, Zhu Z, Cui G, Peng W, Tang Y, Li J and Fan C 2019 Adv. Funct. Mater. 29 1807862
[4] Shi W, Wang S, Ma C and Xu M 2016 Sci. Rep. 6 27577
[5] Zhang L, Shi W, Cao J C, Wang S Q, Dong C G and Yang L 2019 IEEE Electron Device Lett. 40 291
[6] Shi W, Jiang H, Li M X, Ma C, Gui H M, Wang L Y, Xue P B, Fu Z L and Cao J C 2014 Appl. Phys. Lett. 104 042108
[7] Yardimci N T and Jarrahi M 2015 IEEE MTT-S International Microwave Symposium, p. 1
[8] Yang S H, Hashemi M R, Berry C W and Jarrahi M 2014 IEEE Trans. Terahertz Sci. Technol. 4 575
[9] Abdulmunem O M, Hassoon K I, Volkner J, Mikulics M, Gries K I and Balzer J C 2017 J. Infrared Millimeter Terahertz Waves 38 574
[10] Chen G, Cui T J, Jiang Z J and Zhang J 2011 J. Phys.: Conf. Ser. 276 012202
[11] Wang X M, Zhang M M, Shi W and Yan Y H 2014 IEEE Trans. Electron. Devices 61 850
[12] Duvillaret L, Garet F, Roux J F and Coutaz J L 2001 IEEE J. Sel. Top. Quantum Electron. 7 615
[13] Tani M, Matsuura S, Sakai K and Nakashima S 1997 Appl. Opt. 36 7853
[14] Shi W and Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese)
[15] Ma C, Yang L, Wang S Q, Ji Y, Zhang L and Shi W 2017 IEEE Trans. Power Electron. 32 4644
[16] Ma C, Yang L, Dong C G, Wang S Q, Shi W and Cao J C 2018 IEEE Trans. Electron. Devices 65 1043
[1] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[2] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[3] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[4] Investigation of copper sulfate pentahydrate dehydration by terahertz time-domain spectroscopy
Yuan-Yuan Ma(马媛媛), Hao-Chong Huang(黄昊翀), Si-Bo Hao(郝思博), Wei-Chong Tang(汤伟冲), Zhi-Yuan Zheng(郑志远), Zi-Li Zhang(张自力). Chin. Phys. B, 2019, 28(6): 060702.
[5] Optical response of tunable terahertz plasmon in a grating-gated graphene transistor
Bo Yan(闫博), Jingyue Fang(方靖岳), Shiqiao Qin(秦石乔), Yongtao Liu(刘永涛), Li Chen(陈力), Shuang Chen(陈爽), Renbing Li(李仁兵), Zhen Han(韩震). Chin. Phys. B, 2017, 26(9): 097802.
[6] Optimization of wide band mesa-type enhanced terahertz photoconductive antenna at 1550 nm
Jian-Xing Xu(徐建星), Jin-Lun Li(李金伦), Si-Hang Wei(魏思航), Ben Ma(马奔), Yi Zhang(张翼), Yu Zhang(张宇), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(8): 088702.
[7] Far-infrared conductivity of CuS nanoparticles measured by terahertz time-domain spectroscopy
Yang Yu-Ping(杨玉平), Zhang Zhen-Wei(张振伟), Shi Yu-Lei(施宇蕾), Feng Shuai(冯帅), and Wang Wen-Zhong(王文忠). Chin. Phys. B, 2010, 19(4): 043302.
[8] The transmission enhancement of a THz pulse through an Ag/Ag2O layer detected by terahertz time-domain spectroscopy
Chen Hua(陈华) and Wang Li(汪力). Chin. Phys. B, 2009, 18(7): 2785-2787.
[9] Study of the surface and far fields of terahertz radiation generated by large-aperture photoconductive antennas
Zhang Tong-Yi (张同意), Cao Jun-Cheng (曹俊成). Chin. Phys. B, 2004, 13(10): 1742-1746.
No Suggested Reading articles found!