INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells |
Brahim Ait Ali1,2, Reda Moubah2, Abdelkader Boulezhar1, Hassan Lassri2 |
1 LERDyS, Faculty of Science Ain Chock, Hassan II University of Casablanca, Morocco; 2 LPMMAT, Faculty of Science Ain Chock, Hassan II University of Casablanca, Morocco |
|
|
Abstract We report on the temperature-dependent Schottky barrier in organic solar cells based on PTB7:PC71BM. The ideality factor is found to increase with temperature decreasing, which is explained by a model in which the solar cell is taken as Schottky barrier diode. Accordingly, the dark current in the device originates from the thermally emitted electrons across the Schottky barrier. The fittings obtained with the thermal emission theory are systematically studied at different temperatures. It is concluded that the blend/Ca/Al interface presents great inhomogeneity, which can be described by 2 sets of Gaussian distributions with large zero bias standard deviations. With the decrease of temperature, electrons favor going across the Schottky barrier patches with lower barrier height and as a consequence the ideally factor significantly increases at low temperature.
|
Received: 16 December 2019
Revised: 16 June 2020
Accepted manuscript online: 15 July 2020
|
PACS:
|
88.40.jr
|
(Organic photovoltaics)
|
|
78.55.Kz
|
(Solid organic materials)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
33.15.Hp
|
(Barrier heights (internal rotation, inversion, rotational isomerism, conformational dynamics))
|
|
Corresponding Authors:
Reda Moubah
E-mail: reda.moubah@hotmail.fr
|
Cite this article:
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells 2020 Chin. Phys. B 29 098801
|
[1] |
Zhang H, Zhang Q, Zhang Qi, Sun H, Hai G, Tong J, Xu H and Xia R 2019 Chin. Phys. B 28 078108
|
[2] |
Qi H X, Yu B H, Liu S, Zhang M, Ma X L, Wang J and Zhang F J 2018 Chin. Phys. B 27 058802
|
[3] |
Gao J, Gao W, Ma X, Hu Z, Xu C, Wang X, An Q, Yang C, Zhang X and Zhang F 2020 Energy Environ. Sci. 13 958
|
[4] |
Jouane A, Moubah R, Schmerber G, Lardé R and Odarchenko Y 2018 Sol. Energy Mater. Sol. Cells 180 258
|
[5] |
El-Menyawy E M 2015 Mater. Sci. Semicond. Proc. 32 145
|
[6] |
An Q, Wang J, Gao W, Ma X, Hu Z, Gao J, Xu C, Hao M, Zhang X, Yang C and Zhang F 2020 Sci. Bull. 65 538
|
[7] |
Zhong Y, Zhang Q, Wei Y, Li Q and Zhang Y 2018 Chin. Phys. B 27 078802
|
[8] |
Jouane A, Moubah R, Lassri H, Saifaoui D, Schmerber G, Jaouani H, Ennamiri H, Chapuis Y A and Jouane Y 2016 Org. Electron. 39 138
|
[9] |
Qi B, Zhou Q and Wang J 2015 Sci. Rep. 5 11363
|
[10] |
Mao P, Wei Y, Li H and Wang J 2017 Nano Energy 41 717
|
[11] |
Du Y Y, Lin D Q, Chen G H, Bai X Y, Wang L X, Wu R, Wang J O, Qian H J and Li H N 2018 Chin. Phys. B 27 088801
|
[12] |
Ma X, Wang J, An Q, Gao J, Hu Z, Xu C, Zhang X, Liu Z and Zhang F 2020 Nano Energy 70 104496
|
[13] |
Zhang R C, Wang M Y, Yang L Y, Qin W J and Yin S G 2015 Chin. Phys. Lett. 32 077202
|
[14] |
Ebenhoch B, Thomson Stuart A J, Genevičius K, Juška G and Samuel I D W 2015 Org. Electron. 22 62
|
[15] |
Hu Z, Wang Z, An Q and Zhang F 2020 Sci. Bull. 65 131
|
[16] |
Campbell A J, Bradley D D C and Lidzey D G 1997 J. Appl. Phys. 82 6326
|
[17] |
Ait Ali B, Moubah R, Boulezhar A, Shi S and Lassri H 2020 Trans. Electr. Electron. Mater. 21 436
|
[18] |
Biring S, Sung Y M, Nguyen T P, Li Y Z, Lee C C, Chan A H Y, Pal B, Sen S, Liu S W and Wong K T 2019 Org. Electron. 73 166
|
[19] |
Servaites J D, Ratner M A and Marks T J 2011 Energ. Environ. Sci. 4 4410
|
[20] |
Noh S, Suman C K, Lee D, Kim S and Lee C 2010 J. Nanosci. Nanotechnol. 10 6815
|
[21] |
Yuan H, Song K W, Han C, Tang X Y, He X N, Zhang Y M and Zhang Y M 2019 Chin. Phys. B 28 117303
|
[22] |
Breitenstein O, Altermatt P, Ramspeck K and Schenk A 2006 Proceedings of the 21st European Photovoltaic Solar Energy Conference, September, 2006, pp. 625-628
|
[23] |
Qi B and Wang J 2013 Phys. Chem. Chem. Phys. 15 8972
|
[24] |
Chen G, Si C, Tang Z, Guo K, Wang T, Zhang J and Wei B 2016 Synth. Met. 222 293
|
[25] |
Chen G, Wang T, Li C, Yang L, Xu T, Zhu W, Gao Y and Wei B 2016 Org. Electron. 36 50
|
[26] |
Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J and Brabec C J 2006 Adv. Mater. 18 789
|
[27] |
Oseni S O and Mola G T 2017 Sol. Energy 150 66
|
[28] |
Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
|
[29] |
Cowan S R, Roy A and Heeger A J 2010 Phys. Rev. B 82 245207
|
[30] |
Alsharari A M, Qashou S I, Darwich A A A and El-Nahass M M 2020 Thin Solid Films 704 137977
|
[31] |
Darwish A A A, El-Shazly E A A, Attia A A and Abd El-Rahman K F 2016 J. Mater. Sci.: Mater. Electron. 27 8786
|
[32] |
Card H C and Rhoderick E H 1971 J. Phys. D: Appl. Phys. 4 1589
|
[33] |
Dogan H and Elagoz S 2014 Physica E: Low Dimens. Syst. Nanostruct. 63 186
|
[34] |
Li J L, Li Y, Wang L, Xu Y, Yan F, Han P and Ji X L 2019 Chin. Phys. B 28 027303
|
[35] |
Li H, He D, Zhou Q, Mao P, Cao J, Ding L and Wang J 2017 Sci. Rep. 7 40134
|
[36] |
Werner J H and Güttler H H 1991 J. Appl. Phys. 69 1522
|
[37] |
Janardhanam V, Jyothi I, Ahn K S and Choi C J 2013 Thin Solid Films 546 63
|
[38] |
Sullivan J P, Tung R T and Pinto M R 1991 J. Appl. Phys. 70 7403
|
[39] |
Altuntaş H, Altindal S, Shtrikman H and Özçlik S 2009 Microelectron. Reliab. 49 904
|
[40] |
Von Wenckstern H, Biehne G, Abdel Rahman R, Hochmuth H, Lorenz M and Grundmann M 2006 Appl. Phys. Lett. 88 92102
|
[41] |
Song Y P, Meirhaeghe Van R L, Laflére W H and Cardon F 1986 Solid State Electron. 29 633
|
[42] |
Chand S and Bala S 2005 Appl. Surf. Sci. 252 358
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|