Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 098801    DOI: 10.1088/1674-1056/aba5fc

Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells

Brahim Ait Ali1,2, Reda Moubah2, Abdelkader Boulezhar1, Hassan Lassri2
1 LERDyS, Faculty of Science Ain Chock, Hassan II University of Casablanca, Morocco;
2 LPMMAT, Faculty of Science Ain Chock, Hassan II University of Casablanca, Morocco
Abstract  We report on the temperature-dependent Schottky barrier in organic solar cells based on PTB7:PC71BM. The ideality factor is found to increase with temperature decreasing, which is explained by a model in which the solar cell is taken as Schottky barrier diode. Accordingly, the dark current in the device originates from the thermally emitted electrons across the Schottky barrier. The fittings obtained with the thermal emission theory are systematically studied at different temperatures. It is concluded that the blend/Ca/Al interface presents great inhomogeneity, which can be described by 2 sets of Gaussian distributions with large zero bias standard deviations. With the decrease of temperature, electrons favor going across the Schottky barrier patches with lower barrier height and as a consequence the ideally factor significantly increases at low temperature.
Keywords:  organic materials      photovoltaics      Schottky barrier      barrier height  
Received:  16 December 2019      Revised:  16 June 2020      Accepted manuscript online:  15 July 2020
PACS:  88.40.jr (Organic photovoltaics)  
  78.55.Kz (Solid organic materials)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  33.15.Hp (Barrier heights (internal rotation, inversion, rotational isomerism, conformational dynamics))  
Corresponding Authors:  Reda Moubah     E-mail:

Cite this article: 

Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells 2020 Chin. Phys. B 29 098801

[1] Zhang H, Zhang Q, Zhang Qi, Sun H, Hai G, Tong J, Xu H and Xia R 2019 Chin. Phys. B 28 078108
[2] Qi H X, Yu B H, Liu S, Zhang M, Ma X L, Wang J and Zhang F J 2018 Chin. Phys. B 27 058802
[3] Gao J, Gao W, Ma X, Hu Z, Xu C, Wang X, An Q, Yang C, Zhang X and Zhang F 2020 Energy Environ. Sci. 13 958
[4] Jouane A, Moubah R, Schmerber G, Lardé R and Odarchenko Y 2018 Sol. Energy Mater. Sol. Cells 180 258
[5] El-Menyawy E M 2015 Mater. Sci. Semicond. Proc. 32 145
[6] An Q, Wang J, Gao W, Ma X, Hu Z, Gao J, Xu C, Hao M, Zhang X, Yang C and Zhang F 2020 Sci. Bull. 65 538
[7] Zhong Y, Zhang Q, Wei Y, Li Q and Zhang Y 2018 Chin. Phys. B 27 078802
[8] Jouane A, Moubah R, Lassri H, Saifaoui D, Schmerber G, Jaouani H, Ennamiri H, Chapuis Y A and Jouane Y 2016 Org. Electron. 39 138
[9] Qi B, Zhou Q and Wang J 2015 Sci. Rep. 5 11363
[10] Mao P, Wei Y, Li H and Wang J 2017 Nano Energy 41 717
[11] Du Y Y, Lin D Q, Chen G H, Bai X Y, Wang L X, Wu R, Wang J O, Qian H J and Li H N 2018 Chin. Phys. B 27 088801
[12] Ma X, Wang J, An Q, Gao J, Hu Z, Xu C, Zhang X, Liu Z and Zhang F 2020 Nano Energy 70 104496
[13] Zhang R C, Wang M Y, Yang L Y, Qin W J and Yin S G 2015 Chin. Phys. Lett. 32 077202
[14] Ebenhoch B, Thomson Stuart A J, Genevičius K, Juška G and Samuel I D W 2015 Org. Electron. 22 62
[15] Hu Z, Wang Z, An Q and Zhang F 2020 Sci. Bull. 65 131
[16] Campbell A J, Bradley D D C and Lidzey D G 1997 J. Appl. Phys. 82 6326
[17] Ait Ali B, Moubah R, Boulezhar A, Shi S and Lassri H 2020 Trans. Electr. Electron. Mater. 21 436
[18] Biring S, Sung Y M, Nguyen T P, Li Y Z, Lee C C, Chan A H Y, Pal B, Sen S, Liu S W and Wong K T 2019 Org. Electron. 73 166
[19] Servaites J D, Ratner M A and Marks T J 2011 Energ. Environ. Sci. 4 4410
[20] Noh S, Suman C K, Lee D, Kim S and Lee C 2010 J. Nanosci. Nanotechnol. 10 6815
[21] Yuan H, Song K W, Han C, Tang X Y, He X N, Zhang Y M and Zhang Y M 2019 Chin. Phys. B 28 117303
[22] Breitenstein O, Altermatt P, Ramspeck K and Schenk A 2006 Proceedings of the 21st European Photovoltaic Solar Energy Conference, September, 2006, pp. 625-628
[23] Qi B and Wang J 2013 Phys. Chem. Chem. Phys. 15 8972
[24] Chen G, Si C, Tang Z, Guo K, Wang T, Zhang J and Wei B 2016 Synth. Met. 222 293
[25] Chen G, Wang T, Li C, Yang L, Xu T, Zhu W, Gao Y and Wei B 2016 Org. Electron. 36 50
[26] Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J and Brabec C J 2006 Adv. Mater. 18 789
[27] Oseni S O and Mola G T 2017 Sol. Energy 150 66
[28] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[29] Cowan S R, Roy A and Heeger A J 2010 Phys. Rev. B 82 245207
[30] Alsharari A M, Qashou S I, Darwich A A A and El-Nahass M M 2020 Thin Solid Films 704 137977
[31] Darwish A A A, El-Shazly E A A, Attia A A and Abd El-Rahman K F 2016 J. Mater. Sci.: Mater. Electron. 27 8786
[32] Card H C and Rhoderick E H 1971 J. Phys. D: Appl. Phys. 4 1589
[33] Dogan H and Elagoz S 2014 Physica E: Low Dimens. Syst. Nanostruct. 63 186
[34] Li J L, Li Y, Wang L, Xu Y, Yan F, Han P and Ji X L 2019 Chin. Phys. B 28 027303
[35] Li H, He D, Zhou Q, Mao P, Cao J, Ding L and Wang J 2017 Sci. Rep. 7 40134
[36] Werner J H and Güttler H H 1991 J. Appl. Phys. 69 1522
[37] Janardhanam V, Jyothi I, Ahn K S and Choi C J 2013 Thin Solid Films 546 63
[38] Sullivan J P, Tung R T and Pinto M R 1991 J. Appl. Phys. 70 7403
[39] Altuntaş H, Altindal S, Shtrikman H and Özçlik S 2009 Microelectron. Reliab. 49 904
[40] Von Wenckstern H, Biehne G, Abdel Rahman R, Hochmuth H, Lorenz M and Grundmann M 2006 Appl. Phys. Lett. 88 92102
[41] Song Y P, Meirhaeghe Van R L, Laflére W H and Cardon F 1986 Solid State Electron. 29 633
[42] Chand S and Bala S 2005 Appl. Surf. Sci. 252 358
[1] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[2] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[3] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[6] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[7] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[8] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[9] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[10] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[11] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[12] Improvements in reverse breakdown characteristics of THz GaAs Schottky barrier varactor based on metal-brim structure
Lu-Wei Qi(祁路伟), Xiao-Yu Liu(刘晓宇), Jin Meng(孟进), De-Hai Zhang(张德海), Jing-Tao Zhou(周静涛). Chin. Phys. B, 2020, 29(5): 057306.
[13] Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination
Wei-Fan Wang(王伟凡), Jian-Feng Wang(王建峰), Yu-Min Zhang(张育民), Teng-Kun Li(李腾坤), Rui Xiong(熊瑞), Ke Xu(徐科). Chin. Phys. B, 2020, 29(4): 047305.
[14] Optimization of terahertz monolithic integrated frequency multiplier based on trap-assisted physics model of THz Schottky barrier varactor
Lu-Wei Qi(祁路伟), Jin Meng(孟进), Xiao-Yu Liu(刘晓宇), Yi Weng(翁祎), Zhi-Cheng Liu(刘志成), De-Hai Zhang(张德海)†, Jing-Tao Zhou(周静涛)‡, and Zhi Jin(金智). Chin. Phys. B, 2020, 29(10): 104212.
[15] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
No Suggested Reading articles found!