Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 027301    DOI: 10.1088/1674-1056/28/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor

Sheng-Lei Zhao(赵胜雷)1, Zhi-Zhe Wang(王之哲)2, Da-Zheng Chen(陈大正)1, Mao-Jun Wang(王茂俊)3, Yang Dai(戴扬)4, Xiao-Hua Ma(马晓华)1, Jin-Cheng Zhang(张进成)1, Yue Hao(郝跃)1
1 Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China;
3 Institute of Microelectronics, Peking University, Beijing 100871, China;
4 School of Information Science and Technology, Northwest University, Xi'an 710127, China
Abstract  In this paper, we present a 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor (DH HEMT) with a gate-drain spacing LGD=18.8 μm. Compared with the regular DH HEMT, our circular structure has a high average breakdown electric-field strength that increases from 0.42 MV/cm to 0.96 MV/cm. The power figure of merit VBR2/RON for the circular HEMT is as high as 1.03×109 V2·Ω-1·cm-2. The divergence of electric field lines at the gate edge and no edge effect account for the breakdown enhancement capability of the circular structure. Experiments and analysis indicate that the circular structure is an effective method to modulate the electric field.
Keywords:  AlGaN/GaN/AlGaN DH HEMTs      circular structure      breakdown voltage     
Received:  05 September 2018      Published:  05 February 2019
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400100), the National Natural Science Foundation of China (Grant Nos. 11435010, 61474086, and 61804125), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2016ZDJC-02).
Corresponding Authors:  Jin-Cheng Zhang     E-mail:  jchzhang@xidian.edu.cn

Cite this article: 

Sheng-Lei Zhao(赵胜雷), Zhi-Zhe Wang(王之哲), Da-Zheng Chen(陈大正), Mao-Jun Wang(王茂俊), Yang Dai(戴扬), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor 2019 Chin. Phys. B 28 027301

[1] Tipirneni N, Koudymov A, Adivarahan V, Yang J, Simin G and Khan M A 2006 IEEE Electron Dev. Lett. 27 716
[2] Selvaraj S L, Suzue T and Egawa T 2009 IEEE Electron Dev. Lett. 30 587
[3] Zhao S L, Hou B, Chen W W, Mi M H, Zheng J X, Zhang J C, Ma X H and Hao Y 2016 IEEE Trans. Power Electron. 31 1517
[4] Xiao M, Duan X L, Zhang J C and Hao Y 2018 IEEE Electron Dev. Lett. 39 719
[5] Liu T T, Zhang K, Zhu G R, Zhou J J, Kong Y C, Yu X X and Chen T S 2018 Chin. Phys. B 27 047307
[6] Han T C, Zhao H D, Yang L and Wang Y 2017 Chin. Phys. B 26 107301
[7] Karmalkar S and Mishra U K 2001 IEEE Trans. Electron. Dev. 48 1515
[8] Xing H L, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Dev. Lett. 25 161
[9] Treidel E B, Hilt O, Brunner F, Würfl J and Tränkle G 2008 IEEE Trans. Electron. Dev. 55 3354
[10] Yang S, Huang S, Chen H, Zhou C, Zhou Q, Schnee M, Zhao Q T, Schubert J and Chen K J 2012 IEEE Electron Dev. Lett. 33 979
[11] Meneghini M, Cibin G, Bertin M, Hurkx G A M, Šonský P I J, Croon J A, Meneghesso G and Zanoni E 2014 IEEE Trans. Electron. Dev. 61 1987
[12] Treidel E B, Brunner F, Hilt O, Cho E, Würfl J and Tränkle G 2010 IEEE Trans. Electron. Dev. 57 3050
[13] Selvaraj S L, Watanabe A, Wakejima A and Egawa T 2012 IEEE Electron Dev. Lett. 33 1375
[14] Lee H S, Piedra D, Sun M, Gao X, Guo S and Palacios T 2012 IEEE Electron Dev. Lett. 33 982
[1] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[2] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[3] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[4] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
[5] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[6] Stacked lateral double-diffused metal-oxide-semiconductor field effect transistor with enhanced depletion effect by surface substrate
Qi Li(李琦), Zhao-Yang Zhang(张昭阳), Hai-Ou Li(李海鸥), Tang-You Sun(孙堂友), Yong-He Chen(陈永和), Yuan Zuo(左园). Chin. Phys. B, 2019, 28(3): 037201.
[7] A snapback-free TOL-RC-LIGBT with vertical P-collector and N-buffer design
Weizhong Chen(陈伟中), Yao Huang(黄垚), Lijun He(贺利军), Zhengsheng Han(韩郑生), Yi Huang(黄义). Chin. Phys. B, 2018, 27(8): 088501.
[8] Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions
Wei Mao(毛维), Hai-Yong Wang(王海永), Peng-Hao Shi(石朋毫), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(4): 047305.
[9] Closed-form breakdown voltage/specific on-resistance model using charge superposition technique for vertical power double-diffused metal-oxide-semiconductor device with high-κ insulator
Xue Chen(陈雪), Zhi-Gang Wang(汪志刚), Xi Wang(王喜), James B Kuo. Chin. Phys. B, 2018, 27(4): 048502.
[10] A novel P-channel SOI LDMOS structure with non-depletion potential-clamped layer
Wei Li(李威), Zhi Zheng(郑直), Zhigang Wang(汪志刚), Ping Li(李平), Xiaojun Fu(付晓君), Zhengrong He(何峥嵘), Fan Liu(刘凡), Feng Yang(杨丰), Fan Xiang(向凡), Luncai Liu(刘伦才). Chin. Phys. B, 2017, 26(1): 017701.
[11] Numerical and experimental study of the mesa configuration in high-voltage 4H-SiC PiN rectifiers
Xiao-Chuan Deng(邓小川), Xi-Xi Chen(陈茜茜), Cheng-Zhan Li(李诚瞻), Hua-Jun Shen(申华军), Jin-Ping Zhang(张金平). Chin. Phys. B, 2016, 25(8): 087201.
[12] Improving breakdown voltage performance of SOI power device with folded drift region
Qi Li(李琦), Hai-Ou Li(李海鸥), Ping-Jiang Huang(黄平奖), Gong-Li Xiao(肖功利), Nian-Jiong Yang(杨年炯). Chin. Phys. B, 2016, 25(7): 077201.
[13] Ultra-low specific on-resistance high-voltage vertical double diffusion metal-oxide-semiconductor field-effect transistor with continuous electron accumulation layer
Da Ma(马达), Xiao-Rong Luo(罗小蓉), Jie Wei(魏杰), Qiao Tan(谭桥), Kun Zhou(周坤), Jun-Feng Wu(吴俊峰). Chin. Phys. B, 2016, 25(4): 048502.
[14] Effect of gate length on breakdown voltage in AlGaN/GaN high-electron-mobility transistor
Jun Luo(罗俊), Sheng-Lei Zhao(赵胜雷), Min-Han Mi(宓珉瀚), Wei-Wei Chen(陈伟伟), Bin Hou(侯斌), Jin-Cheng Zhang(张进成), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(2): 027303.
[15] A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching technology
Yan-Hui Zhang(张彦辉), Jie Wei(魏杰), Chao Yin(尹超), Qiao Tan(谭桥), Jian-Ping Liu(刘建平), Peng-Cheng Li(李鹏程), Xiao-Rong Luo(罗小蓉). Chin. Phys. B, 2016, 25(2): 027306.
No Suggested Reading articles found!