Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097701    DOI: 10.1088/1674-1056/27/9/097701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced magneto-electric effect in manganite tricolor superlattice with artificially broken symmetry

Huanyu Pei(裴环宇), Shujin Guo(郭蜀晋), Hong Yan(闫虹), Changle Chen(陈长乐), Bingcheng Luo(罗炳成), Kexin Jin(金克新)
Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

The magneto-electric effect in magnetic materials has been widely investigated, but obtaining an enhanced magneto-electric effect is challenging. In this study, tricolor superlattices composed of manganese oxides–Pr0.9Ca0.1MnO3, La0.9Sr0.1MnO3, and La0.9Sb0.1MnO3–on (001)-oriented Nb:SrTiO3 substrates with broken space-inversion and time-reversal symmetries are designed. Regarding the electric polarization in the hysteresis loops of the superlattices at different external magnetic fields, both coercive electric field Ec and remnant polarization intensity Pr clearly show strong magnetic-field dependences. At low temperatures (<120 K), a considerable magneto-electric effect in the well-defined tricolor superlattice is observed that is absent in the single compounds. Both maxima of the magneto-electric coupling coefficients ΔEc and ΔPr appear at 30 K. The magnetic dependence of the dielectric constant further supports the magneto-electric effect. Moreover, a dependence of the magneto-electric effect on the periodicity of the superlattices with various structures is observed, which indicates the importance of interfaces. Our experimental results verify previous theoretical results regarding magneto-electric interactions, thereby paving the way for the design and development of novel magneto-electric devices based on manganite ferromagnets.

Keywords:  multiferroic      magneto-electric effect      superlattice  
Received:  11 May 2018      Revised:  09 June 2018      Published:  05 September 2018
PACS:  77.55.Nv (Multiferroic/magnetoelectric films)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.55.Px (Epitaxial and superlattice films)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61471301).

Corresponding Authors:  Changle Chen     E-mail:  chenchl@nwpu.edu.cn

Cite this article: 

Huanyu Pei(裴环宇), Shujin Guo(郭蜀晋), Hong Yan(闫虹), Changle Chen(陈长乐), Bingcheng Luo(罗炳成), Kexin Jin(金克新) Enhanced magneto-electric effect in manganite tricolor superlattice with artificially broken symmetry 2018 Chin. Phys. B 27 097701

[1] Dzyaloshinskii I E 1960 Sov. Phys. JETP 10 628
[2] Li Y C, Zhou H, Pan D F, Zhang H and Wan J G 2015 Acta Phys. Sin. 64 097701 (in Chinese)
[3] Liu E H, Chen Z, Wen X L and Chen C L 2016 Acta Phys. Sin. 65 117701 (in Chinese)
[4] Chen J Y, Bai Y L, Nie C H and Zhao S F 2016 J. Alloy. Compd. 663 480
[5] Liu M, Zhou Z Y, Nan T X, Howe B M, Brown G J and Sun N X 2013 Adv. Mater. 25 1435
[6] Popkov A F, Davydova M D, Zvezdin K A, Solov'yov S V and Zvezdin A K 2016 Phys. Rev. B 93 094435
[7] Liu M 2014 Chin. Sci. Bull. 59 5180
[8] Wang Y A, Wang Y B, Rao W, Gao J X, Zhou W L and Yu J 2013 Chin. Phys. Lett. 30 047502
[9] Zhu M M, Zhou Z Y, Peng B, Zhao S S, Zhang Y J, Niu G, Ren W, Ye Z G, Liu Y H and Liu M 2017 Adv. Funct. Mater. 27 1605598
[10] Song Y Q, Zhou W P, Fang Y, Yang Y T, Wang L Y, Wang D H and Du Y W 2014 Chin. Phys. B 23 077505
[11] Lin P T, Li X, Zhang L, Yin J H, Cheng X W, Wang Z H, Wu Y C and Wu G H 2014 Chin. Phys. B 23 047701
[12] Yu H Z, Chen H G, Xu K Q, Zhao K Y, Zeng H R and Li G R 2014 Chin. Phys. Lett. 31 107701
[13] Huang H B, Hu J M, Yang T N, Ma X Q and Chen L Q 2014 Appl. Phys. Lett. 105 122407
[14] Huang H B, Zhao C P and Ma X Q 2017 J. Magn. Magn. Mater. 426 415
[15] Zhang J X, Ke X, Gou G, Seidel J, Xiang B, Yu P, Chu Y H, Tendeloo G V, Ren X and Ramesh R 2013 Nat. Commun. 4 2678
[16] Fiebig M, Lottermoser T, Meier D and Trassin M 2016 Nat. Rev. Mater. 1 16046
[17] Chen Y B, Zhang F, Zhang L Y, Zhou J, Zhang S T and Chen Y F 2015 Acta Phys. Sin. 64 097502 (in Chinese)
[18] Rogdakis K, Seo J W, Viskadourakis Z, Wang Y, Qune L F N A, Choi E, Burton J D, Tsymbal E Y, Lee J and Panagopoulos C 2012 Nat. Commun. 3 1064
[19] Liu M, Nan T X, Hu J M, Zhao S S, Zhou Z Y, Wang C Y, Jiang Z D, Ren W, Ye Z G, Chen L Q and Sun N X 2016 NPG Asia Mater. 8 e316
[20] Pei H Y, Zhang Y J, Guo S J, Ren L X, Yan H, Chen C L, Jin K X and Luo B C 2018 Appl. Phys. Lett. 112 192904
[21] Zhang J X, He Q, Trassin M, Luo W, Yi D, Rossell M D, Yu P, You L, Wang C H, Kuo C Y, Heron J T, Hu Z, Zeches R J, Lin H J, Tanaka A, Chen C T, Tjeng L H, Chu Y H and Ramesh R 2011 Phys. Rev. Lett. 107 147602
[22] Niu L W, Chen C L, Dong X L, Xing H, Luo B C and Jin K X 2016 Chin. Phys. B 25 107701
[23] Wei M M, Niu M S, Bi P Q, Hao X T, Ren S Q, Xie S J and Qin W 2017 Adv. Opt. Mater. 5 1700644
[24] Kabir R, Wang D Y, Zhang T S, Tian R M, Donelson R, Tan T T and Li S A 2014 Ceram. Int. 40 16701
[25] Norton D P, Chakoumakos B C, Budai J D, Lowndes D H, Sales B C, Thompson J R and Christen D K 1994 Science 265 2074
[26] Kida N, Yamada H, Sato H, Arima T, Kawasaki M, Akoh H and Tokura Y 2007 Phys. Rev. Lett. 99 197404
[27] Tokura Y 2007 J. Magn. Magn. Mater. 310 1145
[28] Pei H Y, Guo S J, Ren L X, Chen C L, Luo B C, Dong X L, Jin K X, Ren R and Zeeshan H M 2017 Sci. Rep. 7 6201
[29] Tokuda M, Mashimo T, Khandaker J I, Ogata Y, Mine Y, Hayami S and Yoshiasa A 2016 J. Mater. Sci. 51 7899
[30] Jeon J, Alagoz H S, Jung J and Chow K H 2015 Appl. Phys. Lett. 107 052402
[31] Varignon J, Bristowe N C, Bousquet E and Ghosez P 2015 Sci. Rep. 5 15364
[32] Fujioka J, Yasue T, Miyasaka S, Yamasaki Y, Arima T, Sagayama H, Inami T, Ishii K and Tokura Y 2010 Phys. Rev. B 82 144425
[33] Sundaresan A, Maignan A and Raveau B 1997 Phys. Rev. B 55 5596
[34] Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M and Tokura Y 2003 Phys. Rev. B 67 180401
[35] Hemberger J, Lunkenheimer P, Fichtl R, von Nidda H A K, Tsurkan V and Loidl A 2005 Nature 434 364
[36] Qiang G, Fang Y F, Lu X W, Cao S X and Zhang J C 2016 Appl. Phys. Lett. 108 022906
[37] Sundar V and Newnham R E 1992 Ferroelectrics 135 431
[1] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
[2] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[3] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[4] An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing
Qing Hu(胡庆), Boyi Dong(董博义), Lun Wang(王伦), Enming Huang(黄恩铭), Hao Tong(童浩), Yuhui He(何毓辉), Ming Xu(徐明), Xiangshui Miao(缪向水). Chin. Phys. B, 2020, 29(7): 070701.
[5] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[6] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[7] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[8] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[9] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[10] Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer
Zhipeng Song(宋志朋), Bao Lei(雷宝), Yun Cao(曹云), Jing Qi(戚竞), Hao Peng(彭浩), Qin Wang(汪琴), Li Huang(黄立), Hongliang Lu(路红亮), Xiao Lin(林晓), Ye-Liang Wang(王业亮), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(5): 056801.
[11] Structures and local ferroelectric polarization switching properties of orthorhombic YFeO3 thin film prepared by a sol-gel method
Runlan Zhang(张润兰), Shuaishuai Li(李帅帅), Changle Chen(陈长乐), Li-An Han(韩立安), Shanxin Xiong(熊善新). Chin. Phys. B, 2019, 28(3): 037701.
[12] High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector
Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 038504.
[13] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[14] Unusual tunability of multiferroicity in GdMn2O5 by electric field poling far above multiferroic ordering point
Xiang Li(李翔), Shuhan Zheng(郑书翰), Liman Tian(田礼漫), Rui Shi(石锐), Meifeng Liu(刘美风), Yunlong Xie(谢云龙), Lun Yang(杨伦), Nian Zhao(赵念), Lin Lin(林林), Zhibo Yan(颜志波), Xiuzhang Wang(王秀章), Junming Liu(刘俊明). Chin. Phys. B, 2019, 28(2): 027502.
[15] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
No Suggested Reading articles found!