Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097506    DOI: 10.1088/1674-1056/27/9/097506
Special Issue: TOPICAL REVIEW — Spin manipulation in solids
TOPICAL REVIEW—Spin manipulation in solids Prev   Next  

Magnetism manipulation in ferromagnetic/ferroelectric heterostructures by electric field induced strain

Xiaobin Guo(郭晓斌), Dong Li(李栋), Li Xi(席力)
Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  

Magnetization manipulation by an electric field (E-field) in ferromagnetic/ferroelectric heterostructures has attracted increasing attention because of the potential applications in novel magnetoelectric devices and spintronic devices, due to the ultra-low power consumption of the process. In this review, we summarize the recent progress in E-field controlled magnetism in ferromagnetic/ferroelectric heterostructures with an emphasis on strain-mediated converse magnetoelectric coupling. Firstly, we briefly review the history, the underlying theory of the magnetoelectric coupling mechanism, and the current status of research. Secondly, we illustrate the competitive energy relationship and volatile magnetization switching under an E-field. We then discuss E-field modified ferroelastic domain states and recent progress in non-volatile manipulation of magnetic properties. Finally, we present the pure E-field controlled 180° in-plane magnetization reversal and both E-field and current modified 180° perpendicular magnetization reversal.

Keywords:  electric field      volatile and non-volatile      magnetization switching  
Received:  27 April 2018      Revised:  09 June 2018      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.55.Nv (Multiferroic/magnetoelectric films)  
  77.80.bn (Strain and interface effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51671098) and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT16R35).

Corresponding Authors:  Li Xi     E-mail:  xili@lzu.edu.cn

Cite this article: 

Xiaobin Guo(郭晓斌), Dong Li(李栋), Li Xi(席力) Magnetism manipulation in ferromagnetic/ferroelectric heterostructures by electric field induced strain 2018 Chin. Phys. B 27 097506

[1] Moodera J S, Kinder L R, Wong T M and Meservey R 1995 Phys. Rev. Lett. 74 3273
[2] Wei H X, Qin Q H, Ma M, Sharif R and Han X F 2007 J. Appl. Phys. 101 09B501
[3] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M and Yang S H 2004 Nat. Mater. 3 862
[4] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F and Ohno H 2008 Appl. Phys. Lett. 93 082508
[5] Chappert C, Fert A and Dau F N V 2007 Nat. Mater. 6 813
[6] Zhu J G 2008 Proc. IEEE 96 1786
[7] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[8] Berger L 1996 Phys. Rev. B 54 9353
[9] Myers E B, Ralph D C, Katine J A, Louie R N and Buhrman R A 1999 Science 285 867
[10] Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Gambardella P 2010 Nat. Mater. 9 230
[11] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[12] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[13] https://www.everspin.com/files/everspin-releases-highest-density-mram-products-final-041216pdf
[14] Kim Y, Fong X, Kwon K W, Chen M C and Roy K 2015 IEEE Trans. Electron. Devices 62 561
[15] Van d B A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J and Koopmans B 2016 Nat. Commun. 7 10854
[16] Lambert C H, Mangin S, Varaprasad B S, Takahashi Y K, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M and Fullerton E E 2014 Science 345 1337
[17] Cao J and Wu J 2011 Sci. Eng. R 71 35
[18] Kharel P, Sudakar C, Dixit A, Harris A B, Naik R and Lawes G 2009 Europhys. Lett. 86 17007
[19] Wu S M, Cybart S A, Yu P, Rossell M D, Zhang J X, Ramesh R and Dynes R C 2010 Nat. Mater. 9 756
[20] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K 2000 Nature 408 944
[21] Bauer U, Yao L, Tan A J, Agrawal P, Emori S, Tuller H L, van Dijken S and Beach G S D 2015 Nat. Mater. 14 174
[22] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
[23] Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Weisheng Z, Trypiniotis, T, Cowburn R P, Chappert C, Ravelosona D and Lecoeur P 2013 Nat. Commun. 4 1378
[24] Rushforth A W, Ranieri E D, Zemen J, Wunderlich J, Edmonds K W, King C S, Ahmad E, Campion R P, Foxon C T, Gallagher B L, Vyborny K, Kucera J and Jungwirth T 2008 Phys. Rev. B 78 085314
[25] Li Y, Luo W, Zhu L, Zhao J and Wang K Y 2015 J. Magn. Magn. Mater. 375 148
[26] Khomskii D I 2009 Physics 2 20
[27] Ma J, Hu J, Li Z and Nan C W 2011 Adv. Mater. 23 1061
[28] Lu C J, Li P, Wen Y M, Yang A C, Yang C, Wang D C, He W and Zhang J T 2014 Chin. Phys. B 23 117503
[29] Wang K F, Liu J M and Ren Z F 2009 Adv. Phys. 58 321
[30] Sen P, Dey A, Mukhopadhyay A K, Bandyopadhyay S K and Himanshu A K 2012 Ceram. Int. 38 1347
[31] Song C, Cui B, Li F, Zhou X and Pan F 2017 Prog. Mater. Sci. 87 33
[32] Sahoo S, Polisetty S, Duan C G, Jaswal S S, Tsymbal E Y and Binek C 2007 Phys. Rev. B 76 092108
[33] Bar-Chaim N, Brunstein M, Grünberg J and Seidman A 1974 J. Appl. Phys. 45 2398
[34] Li Z, Xu Z, Yao X and Cheng Z Y 2008 J. Appl. Phys. 104 024112
[35] Liu M, Obi O, Cai Z, Lou J, Yang G, Ziemer K S and Sun N X 2010 J. Appl. Phys. 107 073916
[36] Vaz C A F 2012 J. Phys.:Condens. Matter 24 333201
[37] Song C, Cui B, Peng J J, Mao H J and Pan F 2016 Chin. Phys. B 25 067502
[38] He H, Zhao J, Luo Z, Yang Y, Xu H, Hong B, Wang L, Wang R and Gao C 2016 Chin. Phys. Lett. 33 67502
[39] Tiercelin N, Dusch Y, Klimov A, Giordano S, Preobrazhensky V and Pernod P 2011 Appl. Phys. Lett. 99 192507
[40] Liu M, Li S, Zhou Z, Beguhn S, Lou J, Xu F, Lu T J and Sun N X 2012 J. Appl. Phys. 112 063917
[41] Yang L, Zhao Y, Zhang S, Li P, Gao Y, Yang Y, Huang H, Miao P, Liu Y, Chen A, Nan C W and Gao C 2015 Sci. Rep. 4 4591
[42] Yang J J, Zhao Y G, Tian H F, Luo L B Zhang H Y, He Y J and Luo H S 2009 Appl. Phys. Lett. 94 212504
[43] Thiele C, Ouml K, rr, Bilani O, Ouml J and Schultz D 2007 Phys. Rev. B 75 054408
[44] Zhang S, Zhao Y, Xia X, Wu Y, Rizwan S, Yang L, Li P, Wang J, Zhu M, Zhang H, Jin X and Han X 2015 Sci. Rep. 4 3727
[45] Xi L, Guo X B, Wang Z, Li Y, Yao Y L, Zuo Y L and Xue D S 2013 Appl. Phys. Express 6 015804
[46] Tiercelin N, Dusch Y, Klimov A, Giordano S, Preobrazhensky V and Pernod P 2011 Appl. Phys. Lett. 99 192507
[47] Cui B S, Guo X B, Wu K, Li D, Zuo Y L and Xi L 2016 J. Phys. D:Appl. Phys. 49 085002
[48] Chen A T and Zhao Y G 2016 APL Mater. 4 032303
[49] Liu M, Nan T, Hu J M, Zhao S S, Zhou Z, Wang C Y, Jiang Z D, Ren W, Ye Z G, Chen L Q and Sun N X 2016 NPG Asia Mater. 8 e316
[50] Wu T, Bur A, Zhao P, Mohanchandra K P, Wong K, Wang K L, Lynch C S and Carman G P 2011 Appl. Phys. Lett. 98 012504
[51] Wu T, Zhao P, Bao M, Bur A, Hockel J L, Wong K, Mohanchandra K P, Lynch C S and Carman G P 2011 J. Appl. Phys. 109 124101
[52] Han X, Xi L, Li Y, Guo X, Li D, Wang Z, Zuo Y and Xue D 2014 Appl. Phys. Lett. 105 122402
[53] Liu M, Howe B M, Grazulis L, Mahalingam K, Nan T, Sun N X and Brown G J 2013 Adv. Mater. 25 4886
[54] Zhang S, Zhao Y G, Li P S, et al. 2012 Phys. Rev. Lett. 108 137203
[55] Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, Espanol M, Lew M, Situ X, Ziemer K S, Harris V G and Sun N X 2009 Adv. Funct. Mater. 19 1826
[56] Chen Y J, Gao J, Fitchorov T, Cai Z, Ziemer K S, Vittoria C and Harris V G 2009 Appl. Phys. Lett. 94 082504
[57] Guo X B, Wu K, Cui B S, Li D, Yun J J, Zuo Y L, Zuo H P, Wang T and Xi L 2016 J. Phys. D:Appl. Phys. 49 055005
[58] Guo X, Zuo Y, Li D, Cui B, Wu K, Yun J, Wang T and Xi L 2016 Appl. Phys. Lett. 108 042403
[59] Parkes D E, Cavill S A, Hindmarch A T and Wadley P 2012 Appl. Phys. Lett. 101 072402
[60] Guo X, Han X, Zuo Y, Zhang J, Li D, Cui B, Wu K, Yun J, Wang T, Peng Y and Xi L 2016 Appl. Phys. Lett. 108 152401
[61] Zhang B, Meng K K, Yang M Y, Edmonds K, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y, Zhao J H, Zheng H Z and Wang K Y 2016 Sci. Rep. 6 28458
[62] Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C and Wang K Y 2017 Acta Phys. Sin. 66 027501 (in Chinese)
[63] Guo X, Cui B, Guan C, Li D, Wu K, Yun J, Wang T, Peng Y, Zuo Y and Xi L 2017 J. Phys. D:Appl. Phys. 50 335001
[64] Yang S W, Peng R C, Jiang T, Liu Y K, Feng L, Wang J J, Chen L Q, Li X G and Nan C W 2014 Adv. Mater. 26 7091
[65] Liu M, Lou J, Li S and Sun N X 2011 Adv. Funct. Mater. 21 2593
[66] Chen A, Zhao Y, Li P, Zhang X, Peng R, Huang H, Zou L, Zheng X, Zhang S, Miao P, Lu Y, Cai J and Nan C W 2016 Adv. Mater. 28 363
[67] Wang J J, Hu J M, Ma J, Zhang J X, Chen L Q and Nan C W 2015 Sci. Rep. 4 7507
[68] Shaw J M, Nembach H T and Silva T J 2013 Phys. Rev. B 87 054416
[69] Hu J M, Yang T, Wang J, Huang H, Zhang J, Chen L Q and Nan C W 2015 Nano Lett. 15 616
[70] Oepen H P, Speckmann M, Millev Y and Kirschner J 1997 Phys. Rev. B 55 2752
[71] Farle M 1998 Rep. Prog. Phys. 61 755
[72] Millev Y and Kirschner J 1996 Phys. Rev. B 54 4137
[73] Sun Y, Ba Y, Chen A, et al. 2017 ACS Appl. Mater. Interfaces 9 10855
[74] Peng B, Zhou Z, Nan T, Dong G, Feng M, Yang Q, Wang X, Zhao S, Xian D, Jiang Z D, Ren W, Ye Z G, Sun N X and Liu M 2017 ACS Nano 11 4337
[75] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[76] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[77] Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P and Wang K L 2014 Nat. Nanotechnol. 9 548
[78] Pai C F, Mann M, Tan A J and Beach G S D 2016 Phys. Rev. B 93 144409
[79] Lau Y C, Betto D, Rode K, Coey J M and Stamenov P 2016 Nat. Nanotechnol. 11 758
[80] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H and Wang K 2017 Nat. Mater. 16 712
[1] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[4] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[5] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[6] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[7] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[8] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[9] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[10] Multiple modes of perpendicular magnetization switching scheme in single spin—orbit torque device
Tong-Xi Liu(刘桐汐), Zhao-Hao Wang(王昭昊), Min Wang(王旻), Chao Wang(王朝), Bi Wu(吴比), Wei-Qiang Liu(刘伟强), and Wei-Sheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(10): 107501.
[11] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[12] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[13] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[14] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
[15] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
No Suggested Reading articles found!