Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 076801    DOI: 10.1088/1674-1056/27/7/076801
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials

Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate

Shanna Zhu(朱珊娜)1,2, Gang Shi(史刚)1,2, Peng Zhao(赵鹏)1,2, Dechao Meng(孟德超)3,4, Genhao Liang(梁根豪)3, Xiaofang Zhai(翟晓芳)3,5, Yalin Lu(陆亚林)3,5,6, Yongqing Li(李永庆)1, Lan Chen(陈岚)1,2, Kehui Wu(吴克辉)1,2,7
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
4 Microsystem and Terahertz Research Center & Institute of Electronic Engineering, CAEP, Mianyang 621900, China;
5 Synergy Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
6 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China;
7 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

Exchange coupling between topological insulator and ferromagnetic insulator through proximity effect is strongly attractive for both fundamental physics and technological applications. Here we report a comprehensive investigation on the growth behaviors of prototype topological insulator Bi2Se3 thin film on a single-crystalline LaCoO3 thin film on SrTiO3 substrate, which is a strain-induced ferromagnetic insulator. Different from the growth on other substrates, the Bi2Se3 films with highest quality on LaCoO3 favor a relatively low substrate temperature during growth. As a result, an inverse dependence of carrier mobility with the substrate temperature is found. Moreover, the magnetoresistance and coherence length of weak antilocalization also have a similar inverse dependence with the substrate temperature, as revealed by the magnetotransport measurements. Our experiments elucidate the special behaviors in Bi2Se3/LaCoO3 heterostructures, which provide a good platform for exploring related novel quantum phenomena, and are inspiring for device applications.

Keywords:  topological insulator      ferromagnetic insulator      molecular beam epitaxy      magnetotransport properties  
Received:  12 April 2018      Revised:  04 May 2018      Published:  05 July 2018
PACS:  68.55.-a (Thin film structure and morphology)  
  73.50.-h (Electronic transport phenomena in thin films)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  

Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0300904 and 2016YFA0202301), the National Natural Science Foundation of China (Grant Nos. 11334011, 11674366, 11674368, and 11761141013), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07010200 and XDPB06).

Corresponding Authors:  Lan Chen, Kehui Wu     E-mail:;

Cite this article: 

Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉) Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate 2018 Chin. Phys. B 27 076801

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[3] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[4] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[5] Moore J E 2010 Nature 464 194
[6] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[7] Vobornik I, Manju U, Fujii J, Borgatti F, Torelli P, Krizmancic D, Hor Y S, Cava R J and Panaccione G 2011 Nano Lett. 11 4079
[8] Ferreira G J and Loss D 2013 Phys. Rev. Lett. 111 106802
[9] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[10] Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659
[11] Luo W and Qi X L 2013 Phys. Rev. B 87 085431
[12] Qi X L, Li R, Zang J and Zhang S C 2009 Science 323 1184
[13] Li M, Cui W, Yu J, Dai Z, Wang Z, Katmis F, Guo W and Moodera J 2015 Phys. Rev. B 91 014427
[14] Chang C Z, Wei P and Moodera J S 2014 Mrs Bull. 39 867
[15] He K, Ma X C, Chen X, Lu L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
[16] Wei P, Katmis F, Assaf B A, Steinberg H, Jarillo-Herrero P, Heiman D and Moodera J S 2013 Phys. Rev. Lett. 110 186807
[17] Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freel, J W, Eremin I, Heiman D, Jarillo-Herrero P and Moodera J S 2016 Nature 533 513
[18] Kandala A, Richardella A, Rench D W, Zhang D M, Flanagan T C and Samarth N 2013 Appl. Phys. Lett. 103 202409
[19] Lang M, Montazeri M, Onbasli M C, Kou X, Fan Y, Upadhyaya P, Yao K, Liu F, Jiang Y, Jiang W, Wong K L, Yu G, Tang J, Nie T, He L, Schwartz R N, Wang Y, Ross C A and Wang K L 2014 Nano Lett. 14 3459
[20] Jiang Z, Katmis F, Tang C, Wei P, Moodera J S and Shi J 2014 Appl. Phys. Lett. 104 222409
[21] Jiang Z, Chang C Z, Tang C, Wei P, Moodera J S and Shi J 2015 Nano Lett. 15 5835
[22] Jiang Z, Chang C Z, Tang C, Zheng J G, Moodera J S and Shi J 2016 AIP Adv. 6 055809
[23] Yang W M, Yang S, Zhang Q H, Xu Y, Shen S P, Liao J, Teng J, Nan C W, Gu L, Sun Y, Wu K H and Li Y Q 2014 Appl. Phys. Lett. 105 092411
[24] Zheng G, Wang N, Yang J, Wang W, Du H, Ning W, Yang Z, Lu H Z, Zhang Y and Tian M 2016 Sci. Rep. 6 21334
[25] Tang C, Chang C Z, Zhao G, Liu Y, Jiang Z, Liu C X, McCartney M R, Smith D J, Chen T, Moodera J S and Shi J 2017 Sci. Adv. 3 1700307
[26] Manna P K and Yusuf S M 2014 Phys. Rep. 535 61
[27] Men'shov V N, Tugushev V V, Eremeev S V, Echenique P M and Chulkov E V 2013 Phys. Rev. B 88 224401
[28] Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z and Wu K 2009 Appl. Phys. Lett. 95 053114
[29] Zhang G, Qin H, Chen J, He X, Lu L, Li Y and Wu K 2011 Adv. Funct. Mater. 21 2351
[30] Richardella A, Zhang D M, Lee J S, Koser A, Rench D W, Yeats A L, Buckley B B, Awschalom D D and Samarth N 2010 Appl. Phys. Lett. 97 262104
[31] Wang Z Y, Li H D, Guo X, Ho W K, Xie M H 2011 J. Cryst. Growth 334 96
[32] Li C H, van't Erve O M J, Robinson J T, Liu Y, Li L and Jonker B T 2014 Nat. Nanotechnol. 9 218
[33] Ginley T P, Wang Y and Law S 2016 Crystals 6 154
[34] Ji H, Stokes R A, Alegria L D, Blomberg E C, Tanatar M A, Reijnders A, Schoop L M, Liang T, Prozorov R, Burch K S, Ong N P, Petta J R and Cava R J 2013 J. Appl. Phys. 114 114907
[35] Meng D, Guo H, Cui Z, Ma C, Zhao J, Lu J, Xu H, Wang Z, Hu X, Fu Z, Peng R, Guo J, Zhai X, Brown G, Knize R and Lu Y 2018 PNAS 115 2873
[36] Fuchs D, Arac E, Pinta C, Schuppler S, Schneider R and Löhneysen H 2008 Phys. Rev. B 77 014434
[37] Rivadulla F, Bi Z, Bauer E, Rivas-Murias B, Vila-Fungueiriño J M and Jia Q 2013 Chem. Mater. 25 55
[38] Freel, J W, Ma J X and Shi J 2008 Appl. Phys. Lett. 93 212501
[39] Zhu S, Meng D, Liang G, Shi G, Zhao P, Cheng P, Li Y, Zhai X, Lu Y, Chen L and Wu K 2018 Nanoscale 10 10041
[40] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nat. Phys. 6 584
[41] Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett. 105 176602
[42] Chen J, He X Y, Wu K H, Ji Z Q, Lu L, Shi J R, Smet J H and Li Y Q 2011 Phys. Rev. B 83 241304(R)
[43] Checkelsky J G, Hor Y S, Cava R J and Ong N P 2011 Phys. Rev. Lett. 106 196801
[44] Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W and Oh S 2011 Phys. Rev. B 84 073109
[45] Bansal N, Kim Y S, Brahlek M, Edrey E and Oh S 2012 Phys. Rev. Lett. 109 116804
[46] Lu H Z, Shi J R and Shen S Q 2011 Phys. Rev. Lett. 107 076801
[47] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[48] Lin C J, He X Y, Liao J, Wang X X, Sacksteder I V V, Yang W M, Guan T, Zhang Q M, Gu L, Zhang G Y, Zeng C G, Dai X, Wu K H and Li Y Q 2013 Phys. Rev. B 88 041307(R)
[1] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[2] Monolithic epitaxy and optoelectronic properties of single-crystalline γ-In2Se3 thin films on mica
Xibo Yin(尹锡波), Yifan Shen(沈逸凡), Chaofan Xu(徐超凡), Jing He(贺靖), Junye Li(李俊烨), Haining Ji(姬海宁), Jianwei Wang(王建伟), Handong Li(李含冬), Xiaohong Zhu(朱小红), Xiaobin Niu(牛晓滨), and Zhiming Wang(王志明). Chin. Phys. B, 2021, 30(1): 017701.
[3] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[4] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[5] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[6] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[7] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2020, 29(10): 104302.
[8] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[9] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[10] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[11] Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy
Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东). Chin. Phys. B, 2019, 28(8): 087301.
[12] Scanning tunneling microscopic investigation on morphology of magnetic Weyl semimetal YbMnBi2
Zhen Zhu(朱朕), Dong Yan(严冬), Xiao-Ang Nie(聂晓昂), Hao-Ke Xu(徐豪科), Xu Yang(杨旭), Dan-Dan Guan(管丹丹), Shiyong Wang(王世勇), Yao-Yi Li(李耀义), Canhua Liu(刘灿华), Jun-Wei Liu(刘军伟), Hui-Xia Luo(罗惠霞), Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(7): 077302.
[13] Topological superconductivity in a Bi2Te3/NbSe2 heterostructure: A review
Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(6): 067403.
[14] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
[15] High quality 2-μm GaSb-based optically pumped semiconductor disk laser grown by molecular beam epitaxy
Jin-Ming Shang(尚金铭), Jian Feng(冯健), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Yi Zhang(张一), Cun-Zhu Tong(佟存柱), Yu Zhang(张宇), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 034202.
No Suggested Reading articles found!