Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 066103    DOI: 10.1088/1674-1056/27/6/066103

Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage

Cheng Zhang(张诚)1,2, Shaolong Tang(唐少龙)2, Mingsen Deng(邓明森)3, Youwei Du(都有为)2
1 School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China;
2 Department of Physics, Nanjing University, Nanjing 210093, China;
3 Guizhou Provincial Key Laboratory of Computational Nano-material Science, Guizhou Education University, Guiyang 550018, China
Abstract  Based on the first-principles plane wave calculations, we show that Li adsorbed on monolayer and bilayer MoS2 forming a uniform and stable coverage can serve as a high-capacity hydrogen storage medium, and Li-coated MoS2 can be recycled by operations at room temperature due to Li having strength binding, big separation and is stable against clustering. The full Li coverage MoS2 system (2*2 hexagonal MoS2 supercell) can reach up to eight H2 molecules on every side, corresponding to the gravimetric density of hydrogen storage up to 4.8 wt% and 2.5 wt% in monolayer and bilayer MoS2, respectively. The adsorption energies of hydrogen molecules are in the range of 0.10eV/H2-0.25 eV/H2, which are acceptable for reversible H2 adsorption/desorption near ambient temperature. In addition, compared with light metals decorated low dimension carbon-based materials, the sandwiched structure of MoS2 exhibits the greatly enhanced binding stability of Li atoms as well as slightly decreased Li-Li interaction and thus avoids the problem of metal clustering. It is interesting to note that the Li atom apart from the electrostatic interaction, acts as a bridge of hybridization between the S atoms of MoS2 and adsorbed H2 molecules. The encouraging results show that such light metals decorated with MoS2 have great potential in developing high performance hydrogen storage materials.
Keywords:  MoS2      Li anchoring      hydrogen storage      first-principles  
Received:  16 January 2018      Revised:  02 March 2018      Published:  05 June 2018
PACS:  61.46.-w (Structure of nanoscale materials) (First-principles theory)  
  88.30.R- (Hydrogen storage)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No.2012CB932304),the National Natural Science Foundation of China (Grant No.21763007),the Innovation Team Foundation of the Education Department of Guizhou Province,China (Grant No.[2014]35),and the Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province,China (Grant No.[2016]002).
Corresponding Authors:  Shaolong Tang, Mingsen Deng     E-mail:;

Cite this article: 

Cheng Zhang(张诚), Shaolong Tang(唐少龙), Mingsen Deng(邓明森), Youwei Du(都有为) Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage 2018 Chin. Phys. B 27 066103

[1] Schlapbach L and Zuttel A 2001 Nature 414 353
[2] Rogner H H 1998 Int. J. Hydrogen Energy 23 833
[3] Ataca C, Akturk E and Ciraci S 2009 Phys. Rev. B 79 041406
[4] Wu J, Ong S M, Kang H C and Tok E S 2010 J. Phys. Chem. C 114 21252
[5] Zhang C, Deng M S and Cai S H 2017 Acta Phys. Sin. 66 128201 (in Chinese)
[6] Lee H, Ihm J, Cohen M L and Louie S G 2009 Phys. Rev. B 80 115412
[7] Zhang Z, Zheng W and Jiang Q 2011 Phys. Chem. Chem. Phys. 13 9483
[8] Yoon M, Yang S, Hicke C, Wang E, Geohegan D B and Zhang Z 2008 Phys. Rev. Lett. 100 206806
[9] Huang L, Liu Y C, Gubbins K E and Nardelli M B 2010 Appl. Phys. Lett. 96 063111
[10] Li M, Li J, Sun Q and Jia Y 2010 J. Appl. Phys. 108 064326
[11] Zhao Y Q, Liu B, Yu Z L, Ma J, Wan Q, He P B and Cai M Q 2017 J. Mater. Chem. C 5 5356
[12] Ley M B, Jepsen L H, Lee Y J, Cho Y W, Colbe J M V, Dornheim M, Rokni M, Jensen J O, Sloth M, Filinchuk Y, Jorgensen J E, Besenbacher F and Jensen T R 2014 Mater. Today 17 122
[13] Cai M Q, Du Y and Huang B Y 2011 Appl. Phys. Lett. 98 102907
[14] Durgun E, Ciraci S, Zhou W and Yildirim Y 2006 Phys. Rev. Lett. 97 226102
[15] Cao D, Cai M Q, Hu W Y, Peng J, Zheng Y and Huang H T 2011 Appl. Phys. Lett. 98 031910
[16] Cai M Q, Zheng Y, Wang B and Yang G W 2009 Appl. Phys. Lett. 95 232901
[17] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[18] Ataca C, Akturk E, Ciraci S and Ustunel H 2008 Appl. Phys. Lett. 93 043123
[19] Havu P, Ijäs M and Harju A 2011 Phys. Rev. B 84 205423
[20] Sun Q, Wang Q, Jena P and Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582
[21] Liu W, Zhao Y, Li Y, Jiang Q and Lavernia E J 2009 J. Phys. Chem. C 113 2028
[22] Zhang C, Geng X P, Tang S L, Deng M S and Du Y W 2017 J. Mater. Chem. A 5 5912
[23] Zhang C, Lei C L, Cen C, Tang S L, Deng M S and Du Y W 2018 Electrochim. Acta 260 814
[24] Meng S, Kaxiras E and Zhang Z 2007 Nano Lett. 7 663
[25] Zhou C, Szpunar J A and Cui X 2016 ACS Appl. Mater. Interfaces 8 15232
[26] Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q and Zhang H 2012 Small 8 63
[27] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[28] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
[29] Liu B, Wu L J, Zhao Y Q, Wang L Z and Cai M Q 2016 J. Magn. Magn. Mater. 420 218
[30] Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Cai M Q and Yu H L 2018 Org. Electron 53 50
[31] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Blochl P E 1994 Phys. Rev. B 50 17953
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Kadantsev E S and Hawrylak P 2012 Solid State Commun. 152 909
[36] Liu C, Li F, Ma L P and Cheng H M 2010 Adv. Mater. 22 E28
[37] Liu C, Fan Y Y, Liu M, Cong H T, Cheng H and Dresselhaus M S 1999 Science 286 1127
[38] Putungan D B, Lin S, Wei C and Kuo J 2015 Phys. Chem. Chem. Phys. 17 11367
[39] Suh M P, Park H J, Prasad T K and Lim D 2009 Chem. Soc. Rev. 38 1294
[40] Chan K T, Neaton J B and Cohen M L 2008 Phys. Rev. B 77 235430
[41] Wu X, Yang J and Zeng X C 2006 J. Chem. Phys. 125 44704
[42] Lee H, Ihm J, Cohen M L and Louie S G 2010 Nano Lett. 10 793
[43] Zhang C, Wei J, Chen L, Tang S L, Deng M S and Du Y W 2017 Nanoscale 9 15423
[44] Zhang C, Huang Y, Tang S L, Deng M S and Du Y W 2017 ACS Energy Lett. 2 759
[1] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[2] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[3] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[4] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[5] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[6] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[7] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[8] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[9] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[10] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[11] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[12] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[13] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[14] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[15] Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1-xCrx (x= 0-0.1) alloys for hydrogen storage
Linling Luo(罗林龄), Xiaoqiu Ye(叶小球), Guanghui Zhang(张光辉), Huaqin Kou(寇化秦), Renjin Xiong(熊仁金), Ge Sang(桑革), Ronghai Yu(于荣海), Dongliang Zhao(赵栋梁). Chin. Phys. B, 2020, 29(8): 088801.
No Suggested Reading articles found!