Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 027701    DOI: 10.1088/1674-1056/27/2/027701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of polarization and piezoelectricity behavior in tetragonal PbTiO3-based superlattices

Zhenye Zhu(朱振业)
School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China
Abstract  

Using first-principles calculation, the contribution of A-site and B-site atoms to polarization and piezoelectricity d33 in the tetragonal PbTiO3/KNbO3 and PbTiO3/LaAlO3 superlattices is investigated in this paper. It is shown that PbTiO3/KNbO3 superlattice has larger polarization and d33 than PbTiO3/LaAlO3 superlattice, because there is stronger charge transfer between A(B)-site atoms and oxygen atom in PbTiO3/KNbO3 superlattice. In PbTiO3/KNbO3 superlattice, B-site atoms (Ti, Nb) make larger contribution to the total polarization and d33 than the A-site atoms (Pb, K) because of the strong covalent interactions between the transition metal (Ti, Nb) and the oxygen atoms, while piezoelectricity in PbTiO3/LaAlO3 superlattice mainly ascribes to piezoelectric contribution of Pb atom and Ti atom in PbTiO3 component. Furthermore, by calculating the proportion of the piezoelectric contribution from PbTiO3 component in superlattices, we find there is different response of strain to piezoelectric contribution from PbTiO3 component in two superlattices but still with a value larger than 50%. In PbTiO3/KNbO3 superlattice, the c-axis strain reduces the proportion, especially under tensile condition. Meanwhile in PbTiO3/LaAlO3 superlattice, PbTiO3 plays a leading role to the total d33, especially under compressive condition, and the proportion decreases as the tensile strain increases.

Keywords:  perovskite superlattice      first-principles      strain      cation      piezoelectricity  
Received:  14 August 2017      Revised:  24 November 2017      Published:  05 February 2018
PACS:  77.55.Px (Epitaxial and superlattice films)  
  77.65.Ly (Strain-induced piezoelectric fields)  
  77.84.Lf (Composite materials)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11372085) and the Shenzhen Science and Technology Project (Grant No. JCYJ20150625142543461).

Corresponding Authors:  Zhenye Zhu     E-mail:  zhuzy@hit.edu.cn
About author:  77.55.Px; 77.65.Ly; 77.84.Lf; 78.20.Bh

Cite this article: 

Zhenye Zhu(朱振业) First-principles study of polarization and piezoelectricity behavior in tetragonal PbTiO3-based superlattices 2018 Chin. Phys. B 27 027701

[1] Ortega N, Kumar A, Scott J F, Douglas B Chrisey, Tomazawa M, Shalini Kumari, Diestra D G B and Katiyarc R S 2012 J. Phys.:Condens. Matter 24 445901
[2] Xie Z K, Yue Z X, Griffin Ruehl, Peng B, Zhang J, Yu Q, Zhang X H and Li L T 2014 Appl. Phys. Lett. 104 243902
[3] Rattikorn Yimnirun, Yongyut Laosiritaworn, Supattra Wongsaenmai, Yimnirun R, Laosiritaworn Y and Wongsaenmai S 2006 J. Phys. D:Appl. Phys. 39 759
[4] Bellaiche L, García A and Vanderbilt D 2000 Phys. Rev. Lett. 84 5427
[5] Yohachi, Yamashita, Yamamoto N, Itsumi K and Hosono Y 2011 Jpn. J. Appl. Phys. 50 09NC05
[6] Lin D B, Zhang S J, Li Z R, Li F, Xu Z, Satoshi Wada, Luo J and Thomas R Shrout 2011 J. Appl. Phys. 110 084110
[7] Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J M and Ghosez P 2008 Nature 452 732
[8] Claudia Bungaro and Rabe K M 2004 Phys. Rev. B 69 184104
[9] Zhu Z Y, Wang S Q and Fu Y M 2016 Chin. Phys. Lett. 33 026302
[10] Li J F, Wang K, Zhang B P and Zhang L M 2006 J. Am. Ceram. Soc. 89 706
[11] Zhang B P, Li J F, Wang K and Zhang H L 2006 J. Am. Ceram. Soc. 89 1605
[12] Luo X and Wang B 2008 J. Appl. Phys. 104 073518
[13] Chen Y F, Yu T, Chen J X, Shun L, Li P and Ming N B 1995 Appl. Phys. Lett. 66 148
[14] Attfield J P 2002 Cry. Eng. 5 427
[15] King G and Woodward P M 2010 J. Mater. Chem. 20 5758
[16] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[17] Kohn W and Sham L J 1965 Phys. Rev. A 140 A1133
[18] Blöchl P E 1990 Phys. Rev. B 50 17953
[19] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[23] Vanderbilt D and King-Smith R D 1993 Phys. Rev. B 48 4442
[24] Shi J, Ilya Grinberg, Wang X L and Andrew M Rappe 2014 Phys. Rev. B 89 094105
[25] Duan Y F, Shi H L and Qin L X 2008 J. Phys.:Condens. Matter 20 175210
[26] Wan L F, Nishimatsu T and Beckman S P 2012 J. Appl. Phys. 111 104107
[27] Pentcheva R and Pickett W E 2009 Phys. Rev. Lett. 102 107602
[28] Xavier Gonze and Changyol Lee 1997 Phys. Rev. B 55 10355
[29] Zhu Z Y, Wang B, Wang H, Zheng Y and Li Q K 2007 Chin. Phys. B 16 1780
[30] Zhu Z Y, Wang B, Zheng Y, Wang H, Li Q K and Li C L 2007 Acta Phys. Sin. 56 5986(in Chinese)
[31] Piskunov S, Heifets E, Eglitis R I and Borstel G 2004 Comput. Mater. Sci. 29 165
[32] Okoye C M I 2003 J. Phys.:Condens. Matter 15 5945
[1] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[2] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[3] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[4] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[5] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[6] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[7] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[8] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[9] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[10] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[11] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[12] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[13] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[14] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[15] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
No Suggested Reading articles found!