Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 106402    DOI: 10.1088/1674-1056/27/10/106402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Study on the phase transition of the fractal scale-free networks

Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团)
School of Physics and Opto-Electronic Engineering, Shandong University of Technology, Zibo 255049, China
Abstract  

Based on the Ising spin, the phase transition on fractal scale-free networks with tree-like skeletons is studied, where the loops are generated by local links. The degree distribution of the tree-like skeleton satisfies the power-law form P(k)~k-δ. It is found that when δ ≥ 3, the renormalized scale-free network will have the same degree distribution as the original network. For a special case of δ=4.5, a ferromagnetic to paramagnetic transition is found and the critical temperature is determined by the box-covering renormalization method. By keeping the structure of the fractal scale-free network constant, the numerical relationship between the critical temperature and the network size is found, which is the form of power law.

Keywords:  fractal scale-free network      phase transition      renormalization  
Received:  14 March 2018      Revised:  11 July 2018      Accepted manuscript online: 
PACS:  64.60.al (Fractal and multifractal systems)  
  64.60.-i (General studies of phase transitions)  
  89.75.-k (Complex systems)  
Fund: 

Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014EL002).

Corresponding Authors:  Qing-Kuan Meng, Dong-Tai Feng     E-mail:  qkmeng@sdut.edu.cn;fengdongtai@sdut.edu.cn

Cite this article: 

Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团) Study on the phase transition of the fractal scale-free networks 2018 Chin. Phys. B 27 106402

[1] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[2] Watts D J and Strogatz S H 1998 Nature 393 440
[3] Jiao B and Wu X Q 2017 Chin. Phys. B 26 028901
[4] Barabási A L and Albert R 1999 Science 286 509
[5] Liu H R, Dong M R, Yin R R and Han L 2015 Chin. Phys. B 24 050506
[6] Ravasz E, Somera A L, Mongru D A, Oltvai Z N and Barabási A L 2002 Science 297 1551
[7] Song C, Havlin S and Makse H A 2005 Nature 433 392
[8] Song C, Gallos L K, Havlin S and Makse H A 2007 J. Statist. Mech.:Theory and Experiment P03006
[9] Albert R, Jeong H and Barabási A L 1999 Nature 401 130
[10] Jeong H, Tombor B, Albert R, Oltvai Z N and Barabási A L 2000 Nature 407 651
[11] Database of Interacting Proteins http://dip.doe-mbi.ucla.edu/dip/
[12] Song C, Havlin S and Makse H A 2006 Nat. Phys. 2 275
[13] Lacasa L and Gómez-Gardeñes J 2013 Phys. Rev. Lett. 110 168703
[14] Shanker O 2007 Mod. Phys. Lett. B 21 321
[15] Shanker O 2007 Mod. Phys. Lett. B 21 639
[16] Dorogovtsev S N, Goltsev A V and Mendes J F F 2002 Phys. Rev. E 66 016104
[17] Leone M, Vázquez A, Vespignani A and Zecchina R 2002 Eur. Phys. J. B 28 191
[18] Aleksiejuka A, Holysta J A and Stauffer D 2002 Physica A 310 260
[19] Herrero C P 2004 Phys. Rev. E 69 067109
[20] Yi H 2010 Phys. Rev. E 81 012103
[21] Yi H 2015 Phys. Rev. E 91 012146
[22] Yoon S, Sindaci M S, Goltsev A V and Mendes J F F 2015 Phys. Rev. E 91 032814
[23] Herrero C P 2015 Phys. Rev. E 91 052812
[24] Jedrzejewski A, Chmiel A and Sznajd-Weron K 2017 Phys. Rev. E 96 012132
[25] Rozenfeld H D, Song C and Makse H A 2010 Phys. Rev. Lett. 104 025701
[26] Goh K I, Salvi G, Kahng B and Kim D 2006 Phys. Rev. Lett. 96 018701
[27] Harris T E 1963 Theory of Branching Processes (Berlin:Springer-Verlag)
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[15] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
No Suggested Reading articles found!