Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 106501    DOI: 10.1088/1674-1056/27/10/106501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Elastocaloric effect and mechanical behavior for NiTi shape memory alloys

Min Zhou(周敏)1, Yu-Shuang Li(李玉霜)2, Chen Zhang(张晨)2, Lai-Feng Li(李来风)1
1 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  

The NiTi shape memory alloy exhibits excellent superelastic property and elastocaloric effect. The large temperature change (ΔT) value of 30 K upon loading and -19 K upon unloading are obtained at room temperature, which are higher than those of the other NiTi-based materials and among the highest values reported in the elastocaloric materials. The asymmetry of the measured ΔT values between the loading and unloading process is ascribed to the friction dissipation. The large temperature change originates from the large entropy change during the stress-induced martensite transformation (MT) and the reverse MT. A large coefficient-of-performance of the material is obtained to be 11.7 at ε=1%, which decreases with increasing the applied strain. These results are very attractive in the present solid-state cooling, which potentially could replace the vapor compression refrigeration technologies.

Keywords:  elastocaloric effect      shape memory alloy      martensitic transformation      entropy change  
Received:  18 April 2018      Revised:  11 June 2018      Accepted manuscript online: 
PACS:  65.40.gd (Entropy)  
  46.25.Hf (Thermoelasticity and electromagnetic elasticity (electroelasticity, magnetoelasticity))  
  62.20.fg (Shape-memory effect; yield stress; superelasticity)  
Fund: 

Project supported by the Science Fund from the Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (TIPC, CAS) (Grant Nos. CRYOQN201501 and CRYO201218) and the National Natural Science Foundation of China (Grant Nos. 51577185, 51377156, and 51408586).

Corresponding Authors:  Min Zhou, Lai-Feng Li     E-mail:  mzhou@mail.ipc.ac.cn;laifengli@mail.ipc.ac.cn

Cite this article: 

Min Zhou(周敏), Yu-Shuang Li(李玉霜), Chen Zhang(张晨), Lai-Feng Li(李来风) Elastocaloric effect and mechanical behavior for NiTi shape memory alloys 2018 Chin. Phys. B 27 106501

[1] Bonnot E, Romero R, Manosa L, Vives E and Planes A 2008 Phys. Rev. Lett. 100 125901
[2] Gschneidner K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[3] Planes A, Manosa L and Acet M 2009 J. Phys.:Conden. Matter 21 233201
[4] Smith A, Bahl C R H, Bjork R, Engelbrecht K, Nielsen K K and Pryds N 2012 Adv. Energy Mater. 2 1288
[5] Mischenko A S, Zhang Q, Scott J F, Whatmore R W and Mathur N D 2006 Science 311 1270
[6] Moya X, Stern-Taulats E, Crossley S, Gonzalez-Alonso D, Kar-Narayan S, Planes A, Manosa L and Mathur N D 2013 Adv. Mater. 25 1360
[7] Moya X, Kar-Narayan S and Mathur N D 2014 Nat. Mater. 13 439
[8] Crossley S, Mathur N D and Moya X 2015 AIP Adv. 5 067153
[9] Manosa L, Planes A and Acet M 2013 J. Mater. Chem. A 1 4925
[10] Bechtold C, Chluba C, De Miranda R L and Quandt E 2012 Appl. Phys. Lett. 101 091903
[11] Xiao F, Jin M, Liu J and Jin X 2015 Acta Mater. 96 292
[12] Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M 2010 Nat. Mater. 9 478
[13] Yuce S, Barrio M, Emre B, Stern-Taulats E, Planes A, Tamarit J L, Mudryk Y, Gschneidner K A Jr Pecharsky V K and Manosa L 2012 Appl. Phys. Lett. 101 071906
[14] Goetzler W, Zogg R, Young J and Johnson C 2014 US Department of Energy
[15] Cui J, Wu Y, Muehlbauer J, Hwang Y, Radermacher R, Fackler S, Wuttig M and Takeuchi I 2012 Appl. Phys. Lett. 101 073904
[16] Lu B and Liu J 2017 Sci. Rep. 7 2084
[17] Xiao F, Fukuda T and Kakeshita T 2013 Appl. Phys. Lett. 102 161914
[18] Manosa L, Jarque-Farnos S, Vives E and Planes A 2013 Appl. Phys. Lett. 103 211904
[19] Vives E, Burrows S, Edwards R S, Dixon S, Manosa L, Planes A and Romero R 2011 Appl. Phys. Lett. 98 011902
[20] Yang Z, Cong D Y, Huang L, Nie Z H, Sun X M, Zhang Q H and Wang Y D 2016 Mater. & Design 92 932
[21] Sun W, Liu J, Lu B, Li Y and Yan A 2016 Scr. Mater. 114 1
[22] Huang Y J, Hu Q D, Bruno N M, Chen J H, Karaman I, Ross J H Jr and Li J G 2015 Scr. Mater. 105 42
[23] Pataky G J, Ertekin E and Sehitoglu H 2015 Acta Mater. 96 420
[24] Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L and Du Y W 2013 Chin. Phys. B 22 077506
[25] He W, Huang H, Liu Z and Ma X 2018 Chin. Phys. B 27 016201
[26] Ossmer H, Chluba C, Gueltig M, Quandt E and Kohl M 2015 Shape Memory Superelasticity 1 142
[27] Luo X H, Ren W J, Jin W and Zhang Z D 2017 Chin. Phys. B 26 036501
[28] Tusek J, Engelbrecht K, Mikkelsen L P and Pryds N 2015 J. Appl. Phys. 117 124901
[29] Wu Y, Ertekin E and Sehitoglu H 2017 Acta Mater. 135 158
[30] Ossmer H, Lambrecht F, Gueltig M, Chluba C, Quandt E and Kohl M 2014 Acta Mater. 81 9
[31] Zhou M, Li Y, Zhang C, Li S, Wu E, Li W and Li L 2018 J. Phys. D:Appl. Phys. 51 135303
[32] Egorushkin V E, Kulmentyev A I and Flat A Y 1987 J. Phys. F:Metal Phys. 17 289
[33] Qian S, Geng Y, Wang Y, Ling J, Hwang Y, Radermacher R, Takeuchi I and Cui J 2016 Int. J. Refrigeration-Rev. Int. Du Froid 64 1
[34] Zhao D, Liu J, Feng Y, Sun W and Yan A 2017 Appl. Phys. Lett. 110 021906
[35] Li Y, Zhao D and Liu J 2016 Sci. Rep. 6 25500
[36] Yang Z, Cong D Y, Sun X M, Nie Z H and Wang Y D 2017 Acta Mater. 127 33
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[3] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[4] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Giant mechanocaloric materials for solid-state cooling
Junran Zhang(张俊然), Yixuan Xu(徐逸轩), Shihai An(安世海), Ying Sun(孙莹), Xiaodong Li(李晓东), Yanchun Li(李延春). Chin. Phys. B, 2020, 29(7): 076202.
[7] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[8] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[9] Influences of La and Ce doping on giant magnetocaloric effect of EuTiO
Zhao-Jun Mo(莫兆军), Qi-Lei Sun(孙启磊), Jun Shen(沈俊), Mo Yang(杨墨), Yu-Jin Li(黎玉进), Lan Li(李岚), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2018, 27(1): 017501.
[10] Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48-xCo2Mn38+xSn12 (x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Abdur Rauf, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(9): 097501.
[11] Large elastocaloric effect in Ti-Ni shape memory alloy below austenite finish temperature
Xiao-Hua Luo(罗小华), Wei-Jun Ren(任卫军), Wei Jin(金伟), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2017, 26(3): 036501.
[12] The magnetic properties and magnetocaloric effects in binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds
Xin-Qi Zheng(郑新奇), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(2): 027501.
[13] Observation of giant magnetocaloric effect under low magnetic fields in EuTi1-xCoxO3
Qi-Lei Sun(孙启磊), Zhao-Jun Mo(莫兆军), Jun Shen(沈俊), Yu-Jin Li(黎玉进), Lan Li(李兰), Jun-Kai Zhang(张君凯), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2017, 26(11): 117501.
[14] Effect of Sb-doping on martensitic transformation and magnetocaloric effect in Mn-rich Mn50Ni40Sn10-xSbx (x=1, 2, 3, and 4) alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(1): 017501.
[15] Magnetic properties and magnetocaloric effects in Er1-xGdxCoAl intermetallic compounds
Gao Xin-Qiang (高新强), Mo Zhao-Jun (莫兆军), Shen Jun (沈俊), Li Ke (李珂), Dai Wei (戴巍), Wu Jian-Feng (吴剑峰), Tang Cheng-Chun (唐成春). Chin. Phys. B, 2015, 24(9): 097502.
No Suggested Reading articles found!