Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017502    DOI: 10.1088/1674-1056/27/1/017502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strong anti-strain capacity of CoFeB/MgO interface on electronic structure and state coupling

Fei Guo(郭飞), Yaping Wu(吴雅苹), Zhiming Wu(吴志明), Ting Chen(陈婷), Heng Li(李恒), Chunmiao Zhang(张纯淼), Mingming Fu(付明明), Yihong Lu(卢奕宏), Junyong Kang(康俊勇)
Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Fujian Provincial Key Laboratory of Semiconductors and Applications, Department of Physics, Xiamen University, Xiamen 361005, China
Abstract  Electronic structure and spin-related state coupling at ferromagnetic material (FM)/MgO (FM=Fe, CoFe, CoFeB) interfaces under biaxial strain are evaluated using the first-principles calculations. The CoFeB/MgO interface, which is superior to the Fe/MgO and CoFe/MgO interfaces, can markedly maintain stable and effective coupling channels for majority-spin 1 state under large biaxial strain. Bonding interactions between Fe, Co, and B atoms and the electron transfer between Bloch states are responsible for the redistribution of the majority-spin 1 state, directly influencing the coupling effect for the strained interfaces. Layer-projected wave function of the majority-spin 1 state suggests slower decay rate and more stable transport property in the CoFeB/MgO interface, which is expected to maintain a higher tunneling magnetoresistance (TMR) value under large biaxial strain. This work reveals the internal mechanism for the state coupling at strained FM/MgO interfaces. This study may provide some references to the design and manufacturing of magnetic tunnel junctions with high tunneling magnetoresistance effect.
Keywords:  ferromagnet material/MgO interface      biaxial strain      state coupling      first-principles calculation  
Received:  08 May 2017      Revised:  09 August 2017      Accepted manuscript online: 
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  72.25.Mk (Spin transport through interfaces)  
  72.25.-b (Spin polarized transport)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400801), the National Natural Science Foundation of China (Grant Nos. 61774128, 61674124, 11604275, 11304257, and 61227009), the Natural Science Foundation of Fujian Province of China (Grant Nos. 2017J01012, 2014J01026, 2016J01037, and 2015J01028), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 20720150027, 20720160044, 20720160122, 20720170085,20720170012, and 20720150033).
Corresponding Authors:  Yaping Wu, Zhiming Wu, Junyong Kang     E-mail:  ypwu@xmu.edu.cn;zmwu@xmu.edu.cn;jykang@xmu.edu.cn

Cite this article: 

Fei Guo(郭飞), Yaping Wu(吴雅苹), Zhiming Wu(吴志明), Ting Chen(陈婷), Heng Li(李恒), Chunmiao Zhang(张纯淼), Mingming Fu(付明明), Yihong Lu(卢奕宏), Junyong Kang(康俊勇) Strong anti-strain capacity of CoFeB/MgO interface on electronic structure and state coupling 2018 Chin. Phys. B 27 017502

[1] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[2] Fert A 2008 Rev. Mod. Phys. 80 1517
[3] Ohno H 2010 Nat. Mater. 9 952
[4] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[5] Syed Sheraz Ahmad W H, Tang J, Zhang Y S, Hu B, Ye J, Gul Q, Zhang X Q and Cheng Z H 2016 Chin. Phys. B 25 97501
[6] Parkin S S P, Roche K P, Samant M G and Rice P M 1999 J. Appl. Phys. 85 5828
[7] Mistral Q, Deac A, Grollier J, Redon O, Liu Y, Li M, Wang P, Dieny B and Devolder T 2006 Materials Science & Engineering B 126 267
[8] Pannetier M, Fermon C, Le G G, Simola J and Kerr E 2004 Science 304 1648
[9] Ripka P and Janosek M 2010 Sensors Journal IEEE 10 1108
[10] Meservey R and Tedrow P M 1994 Physics Reports 238 173
[11] Maekawa S and Inoue J 1996 J. Magn. Magn. Mater. 156 315
[12] Liu Y, Zhu K G, Zhong H C, Zhu Z Y, Yu T and Ma S D 2016 Chin. Phys. B 25 117805
[13] Mathon J and Umerski A 2001 Phys. Rev. B 63 220403
[14] Butler W H, Zhang X G, Schulthess T C and MacLaren J M 2001 Phys. Rev. B 63 054416
[15] Yuasa S and Djayaprawira D D 2007 J. Phys. D: Appl. Phys. 40 R337
[16] Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Nat. Mater. 3 868
[17] Parkin S S, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M and Yang S H 2004 Nat. Mater. 3 862
[18] Zhang X G and Butler W H 2004 Phys. Rev. B 70 172407
[19] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F and Ohno H 2008 Appl. Phys. Lett. 93 082508
[20] Zhang X G, Butler W H and Bandyopadhyay A 2003 Phys. Rev. B 68 092402
[21] Ke Y, Xia K and Guo H 2010 Phys. Rev. Lett. 105 236801
[22] Miao G X, Park Y J, Moodera J S, Seibt M, Eilers G and Münzenberg M 2008 Phys. Rev. Lett. 100 246803
[23] Wang Y, Zhang J, Zhang X G, Cheng H and Han X F 2010 Phys. Rev. B 82 054405
[24] Ma Q L, Iihama S, Kubota T, Zhang X M, Mizukami S, Ando Y and Miyazaki T 2012 Appl. Phys. Lett. 101 122414
[25] Guo F, Wu Z, Chen T, Wu Y, Cai G and Kang J 2015 Computational Materials Science 101 138
[26] He K H and Chen J S 2012 J. Appl. Phys. 111 07c109
[27] Ong P V, Kioussis N, Amiri P K, Wang K L and Carman G P 2015 J. Appl. Phys. 117 17b518
[28] Löhndorf M, Duenas T, Tewes M, Quandt E, Rührig M and Wecker J 2002 Appl. Phys. Lett. 81 313
[29] Bonell F 2010 Phys. Rev. B 82 092405
[30] Burke K, Werschnik J and Gross E K U 2005 J. Chem. Phys. 123 062206
[31] Parr B R and Yang W 1989 Horizons of Quantum Chemistry (New York: Oxford University Press) pp. 5-15
[32] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Blöchl P E 1994 Phys. Rev. B 50 17953
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Chadi D J 1977 Phys. Rev. B 16 1746
[38] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[39] Kanaji T, Asano K and Nagata S 1973 Vacuum 23 55
[40] Lawler J F, Schad R, Jordan S and Kempen H V 1997 J. Magn. Magn. Mater. 165 224
[41] Li C and Freeman A J 1991 Phys. Rev. B 43 780
[42] Nguyen M C, Zhao X, Ji M, Wang C Z, Harmon B and Ho K M 2012 Journal of the Optical Society of America A Optics Image Science & Vision 29 695
[43] Olsson P, Klaver T P C and Domain C 2010 Phys. Rev. B 81 054102
[44] Burton J D, Jaswal S S, Tsymbal E Y, Mryasov O N and Heinonen O G 2006 Appl. Phys. Lett. 89 142507
[45] Urano T and Kanaji T 1988 J. Phys. Soc. Jpn. 57 3403
[46] Wortmann D, Bihlmayer G and Blügel S 2004 J. Phys.: Condens. Matter 16 S5819
[47] Zhang X G and Butler W H 2003 J. Phys.: Condens. Matter 15 R1603
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[9] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
No Suggested Reading articles found!