Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017503    DOI: 10.1088/1674-1056/27/1/017503

Multiferroic and enhanced microwave absorption induced by complex oxide interfaces

Cuimei Cao(曹翠梅)1, Chunhui Dong(董春晖)2, Jinli Yao(幺金丽)1, Changjun Jiang(蒋长军)1
1 Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000, China;
2 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  NiFe2O4 (NFO)/ZnO composite nanoparticles with different ZnO components were investigated, which were prepared by a simple wet chemical route method. The magnetoelectric coupling between magnetostriction from NFO and piezoelectricity from ZnO was induced by the surface coating NFO nanoparticles of ZnO layer, NFO/ZnO composite showed ferroelectric properties and the remanent electric polarization reached 0.08 μC/cm. Moreover, the changes of resistance at different room temperatures reached about 2% under 3 T magnetic fields comparing with that of zero magnetic fields. Furthermore, multiferroic NFO/ZnO resulted in enhancement of microwave absorption due to magnetoelectric coupling.
Keywords:  magnetostrictive      piezoelectricity      microwave absorption      magnetoelectric coupling  
Received:  01 April 2017      Revised:  11 September 2017      Accepted manuscript online: 
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  84.90.+a (Other topics in electronics, radiowave and microwave technology, and direct energy conversion and storage)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51671099, 11374131, and 51501081).
Corresponding Authors:  Changjun Jiang     E-mail:

Cite this article: 

Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军) Multiferroic and enhanced microwave absorption induced by complex oxide interfaces 2018 Chin. Phys. B 27 017503

[1] Chu Y H, Martin L W, Holcomb M B, Gajek M, Han S J, He Q, Balke N, Yang C H, Lee D, Hu W, Zhan Q, Yang P L, Arantxa F R, Andreas S, Wang X and Ramesh R 2008 Nature Mater. 7 478
[2] Zheng H, Wang J, Lofand S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A and Ramesh R 2004 Science 303 661
[3] Fei L, Zhu L, Cheng X, Wang H, Baber S M, Hill J, Lin Q, Xu Y, Deng S and Luo H 2012 Appl. Phys. Lett. 100 082403
[4] Pálová L, Chandra P and Rabe K M 2010 Phys. Rev. Lett. 104 037202
[5] Yang K, Dai Y and Huang B 2012 Appl. Phys. Lett. 100 062409
[6] Khomskii D I 2006 J. Magn. Magn. Mater. 306 1
[7] Varshney D, Kumar A and Verma K 2011 J. Alloys Compd. 509 8421
[8] Kumaresan S, Vallalperuman K, Sathishkumar S, Karthik1 M and SivaKarthik P 2017 J. Mater Sci. Mater. Electron. 28 9199
[9] Ren Y L, Wu H Y, Lu M M, Chen Y J, Zhu C L, Gao P, Cao M S, Li C Y and Ouyang Q Y 2012 ACS Appl. Mater. Interf. 4 6436
[10] Zhu C, Zhang S, Sun Y and Chen Y 2017 J. Alloys Compd. 711 552
[11] Wang G, Peng X, Yu L, Wan G, Lin S and Qin Y 2015 J. Mater. Chem. A 3 2734
[12] Herng T S, Wong M F, Qi D, Yi J, Kumar A, Huang A, Kartawidjaja F C, Smadici S, Abbamonte P, Sánchez-Hanke C, Shannigrahi S, Xue J M, Wang J, Feng Y P, Rusydi A, Zeng K and Ding J 2011 Adv. Mater. 23 1635
[13] Dong C, Zheng X, Li J, Guo D, Wu L, Jiang X, Jiang C and Xue D 2013 IEEE Trans. Magn. 49 4238
[14] Schwartz D A, Norberg N S, Nguyen Q P, Parker J M and Gamelin D R 2003 JACS 125 13205
[15] Zhang H E, Zhang B F, Wang G F, Dong X H and Gao Y 2007 J. Magn. Magn. Mater. 312 126
[16] Zhu W, Wang L, Zhao R, Ren J, Lua G and Wang Y 2011 Nanoscale 3 2862
[17] Akther Hossain A K M, Seki M, Kawai T and Tabata H 2004 J. Appl. Phys. 96 1273
[18] Rezlescu E and Rezlescu N 1999 J. Magn. Magn. Mater. 193 501
[19] Hu J, Qin H, Wang Y, Wang Z and Zhang S 2000 Solid State Commun. 115 233
[20] Wang J, Deng H, Li Y, Song P and Shi J 2008 J. Magn. Magn. Mater. 320 227
[21] Atif M, Nadeem M, Grössinger R and Turtelli R S 2011 J. Alloys Compd. 509 5720
[22] Smith A B and Jones R V 1966 J. Appl. Phys. 37 1001
[23] Li Z, Zhou M, Ding W, Zhou H, Chen B, Wan J G, Liu J M and Wang G 2012 Appl. Phys. Lett. 100 262903
[24] Maeda T, Sugimoto S, Kagotani T, Tezuka N and Inomata K 2004 J. Magn. Magn. Mater. 281 195
[25] Xi L, Wang Z, Zuo Y and Shi X 2011 Nanotechnology 22 045707
[1] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[2] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[3] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[4] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[5] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[6] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[7] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[8] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[9] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[10] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[11] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[12] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
Wei Wang(王伟), Jun-en Yao(姚骏恩). Chin. Phys. B, 2018, 27(9): 098503.
[13] First-principles study of polarization and piezoelectricity behavior in tetragonal PbTiO3-based superlattices
Zhenye Zhu(朱振业). Chin. Phys. B, 2018, 27(2): 027701.
[14] Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field
Qian Li(李潜), Dun-Hui Wang(王敦辉), Qing-Qi Cao(曹庆琪), You-Wei Du(都有为). Chin. Phys. B, 2017, 26(9): 097502.
[15] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
No Suggested Reading articles found!