Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 098104    DOI: 10.1088/1674-1056/26/9/098104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Material microstructures analyzed by using gray level Co-occurrence matrices

Yansu Hu(胡延苏)1, Zhijun Wang(王志军)2, Xiaoguang Fan(樊晓光)2, Junjie Li(李俊杰)2, Ang Gao(高昂)3
1 School of Electronics and Control, Chang'an University, Xi'an 710064, China;
2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
3 School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design. At present, the quantitative characterization methods mainly rely on the microstructure characterization of shape, size, distribution, and volume fraction, which related to the mechanical properties. These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors. In this paper, we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly. The statistical approach is based on gray level Co-occurrence matrix (GLCM), allowing an objective and repeatable study on material microstructures. We first present how to identify GLCM with the optimal parameters, and then apply the method on three systems with different microstructures. The results show that GLCM can reveal the interface information and microstructures complexity with less human impact. Naturally, there is a good correlation between GLCM and the mechanical properties.

Keywords:  microstructures      quantitative characterization      mechanical properties      gray level Co-occurrence matrix  
Received:  01 April 2017      Revised:  05 June 2017      Accepted manuscript online: 
PACS:  81.30.-t (Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)  
  81.70.-q (Methods of materials testing and analysis)  
  81.90.+c (Other topics in materials science)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 5147113 and 51505037) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 3102017zy029, 310832163402, and 310832163403).

Corresponding Authors:  Zhijun Wang     E-mail:  zhjwang@nwpu.edu.cn

Cite this article: 

Yansu Hu(胡延苏), Zhijun Wang(王志军), Xiaoguang Fan(樊晓光), Junjie Li(李俊杰), Ang Gao(高昂) Material microstructures analyzed by using gray level Co-occurrence matrices 2017 Chin. Phys. B 26 098104

[1] Meyers M A and Chawla K K 2009 Mechanical Behavior of Materials (Cambridge: Cambridge University Press) pp. 1-7
[2] Wojnar L 1988 Image Analysis: Applications in Materials Engineering (Crc Press) pp. 3-8
[3] Xu L, Zhao W M, Ding H L, Ma Z Y, Xu J, Chen K J and Li W 2010 Chin. Phys. B 19 047308
[4] Zheng O, Ma J Y, Zhou J P, Jin L, Zhao D S and Wang R H 2009 Chin. Phys. B 18 4370
[5] Wang K X, Zeng W D, Shao Y T, Zhao Y Q and Zhou Y G 2009 Rare Metal. Mater. Eng. 38 398
[6] Sampath S, Jiang X Y, Matejicek J, Leger A C and Vardelle A 1999 Mater. Sci. Eng. A 272 181
[7] Czerwinski F, Zielinska-Lipiec A, Pinet P J and Overbeeke J 2001 Acta Materialia 49 1225
[8] Abrams H 1971 Metallography 4 59
[9] Qin M H, Lin L, Li L, Jia X T and Liu J M 2015 Chin. Phys. B 24 037509
[10] Xu J L and Chen C 2004 Acta Metrologica Sin. 4 369
[11] Zhang Y X, Wang J C, Yang Y J, Yang G C and Zhou Y H 2009 Chin. Phys. B 18 4407
[12] Lee J H, Moon H, Lee H W, Kim J, Kim J D and Yoon K H 2002 Solid State Ionics 148 15
[13] Dallair M and Furrer D 2004 Adv. Mater. Process. 162 25
[14] Li G R, Wang F F, Wang H M, Zheng R, Xue F and Cheng J F 2017 Chin. Phys. B 26 046201
[15] Campbell A, Murray P, Yakushina E, Marshall S and Ion W 2016 Proceedings of the 4th International Conference Recent Trends in Structural Materials, November 9-11, 2016, Czech Republic, p. 012011
[16] DeCost B L and Holm E A 2015 Comput. Mater. Sci. 110 126
[17] Haralick R M, Shanmugam K and Dinstein I 1973 IEEE Trans. Syst. Man Cybern. SMC-3 610
[18] Haralick R M 1979 Proc. IEEE 67 786
[19] Haralick R M and Shanmugam K 1973 IEEE Trans. Geosci. Electron. 11 171
[20] Champion I, Germain C, Da Costal J P, Alborini A and Dubois-Femandez P 2014 IEEE Geosci. Remote Sens. Lett. 11 5
[21] Su H, Wang Y P, Xiao J and Li L L 2013 ISPRS J. Photogram. Remote Sens. 85 13
[22] Eichkitz C G, Davies J, Amtmann J, Schreilechner M G and De Groot P 2015 First Break 33 71
[23] Hu S, Xu C, Guan W Q, Tang Y and Liu Y N 2014 Bio-medical Mater. Eng. 24 129
[24] Tan T C, Ritter L J, Whitty A, Fernandez R C, Moran L J, Robertson S A, Thompson J G and Brown H M 2016 Mol. Reprod. Dev. 83 701
[25] Renzetti F R and Zortea L 2011 Frattura ed Integrita Strutturale 16 43
[26] Renzetti F R and Zortea L 2010 Proceedings of the Youth Symposium on Experimental Solid Mechanics 2010, Trieste, Italy
[27] Ulaby F T, Kouyate F, Brisco B and Williams T L 1986 IEEE Trans. Geosci. Remote Sens. GE-24 235
[28] Ou X, Pan W and Xiao P 2014 Int. J. Pharmaceutics 460 28
[29] Gonzalez R C and Woods R E 2006 Digital Image Processing (Pearson Education) p. 849
[30] Conners R W and Harlow C A 1980 IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2 204
[31] Kekre H B, Thepade S D, Sarode T K and Suryawanshi V 2010 Int. J. Comput. Theory Eng. 2 695
[32] He F, Wang Z J, Cheng P, Wang Q, Li J J, Dang Y Y, Wang J C and Liu C T 2016 J. Alloys Compd. 656 284
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[4] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[5] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[6] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[7] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[8] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[9] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[10] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[11] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
[12] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[13] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[14] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[15] Spectra properties of Yb3+, Er3+: Sc2SiO5 crystal
Yanyan Xue(薛艳艳), Lihe Zheng(郑丽和), Dapeng Jiang(姜大朋), Qinglin Sai(赛青林), Liangbi Su(苏良碧), Jun Xu(徐军). Chin. Phys. B, 2019, 28(3): 037802.
No Suggested Reading articles found!