Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 068701    DOI: 10.1088/1674-1056/28/6/068701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical study of overstretching DNA-RNA hybrid duplex

Dong-Ni Yang(杨东尼)1,2, Zhen-Sheng Zhong(钟振声)1,2, Wen-Zhao Liu(刘文钊)1,2, Thitima Rujiralai3, Jie Ma(马杰)1,2
1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China;
3 Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
Abstract  

DNA-RNA hybrid (DRH) plays important roles in many biological processes. Here, we use a thermodynamic theory to analyze the free energy and unpeeling properties of the overstretching transition for the DRH molecule and compare the results with double-helix DNA. We report that the RNA strand of DRH is easier to get unpeeled than the DNA strand while the difficulty in unpeeling the double helix DNA lies in between. We also investigate the sequence effect, such as GC content and purine content, on the properties of unpeeling the DRH. Further, to study the temperature effect, the force-temperature phase diagram of DRH and DNA are calculated and compared. Finally, using a kinetic model, we calculate the force-extension curves in the DRH stretching and relaxation process under different pulling rates and temperatures. Our results show that both pulling rate and temperature have important influences on the stretching and relaxation kinetics of unpeeling the DRH. Putting all these results together, our work provides a comprehensive view of both the thermodynamics and kinetics in DRH overstretching.

Keywords:  DNA-RNA hybrid      mechanical properties      overstretching      thermodynamic and kinetic model  
Received:  11 March 2019      Revised:  08 April 2019      Accepted manuscript online: 
PACS:  87.14.G- (Nucleic acids)  
  87.15.La (Mechanical properties)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.10.Pq (Elasticity theory)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11674403), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 31700809), the Fundamental Research Funds for the Central Universities (Grant No. 18lgzd16), and the Open Fund of the State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University.

Corresponding Authors:  Jie Ma     E-mail:  majie6@mail.sysu.edu.cn

Cite this article: 

Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰) Theoretical study of overstretching DNA-RNA hybrid duplex 2019 Chin. Phys. B 28 068701

[1] Aguilera A and García-Muse T 2012 Mol. Cell 46 115
[2] Wright Addison V, Nuñez James K and Doudna Jennifer A 2016 Cell 164 29
[3] Ogawa T and Okazaki T 1980 Ann. Rev. Biochem. 49 421
[4] Santos-Pereira J M and Aguilera A 2015 Nat. Rev. Genet. 16 583
[5] Fazzio T G 2016 Transcription 7 121
[6] Lu W T, Hawley B R, Skalka G L, Baldock R A, Smith E M, Bader A S, Malewicz M, Watts F Z, Wilczynska A and Bushell M 2018 Nature Commun. 9 532 13
[7] Grunseich C, Wang I X, Watts J A, Burdick J T, Guber R D, Zhu Z, Bruzel A, Lanman T, Chen K, Schindler A B, Edwards N, Ray-Chaudhury A, Yao J, Lehky T, Piszczek G, Crain B, Fischbeck K H and Cheung V G 2018 Mol. Cell 69 426
[8] Toubiana S and Selig S 2018 FEBS J. 285 2552
[9] Biroccio A, Leonetti C and Zupi G 2003 Oncogene 22 6579
[10] Groh M and Gromak N 2014 Plos Genetics 10 e1004630
[11] Zhang C, Fu H, Yang Y, Zhou E, Tan Z, You H and Zhang X 2019 Biophys. J. 116 196
[12] Huang Y, Chen C and Russu I M 2009 Biochemistry 48 3988
[13] Noy A, Perez A, Marquez M, Luque F J and Orozco M 2005 J. Am. Chem. Soc. 127 4910
[14] Lesnik E A and Freier S M 1995 Biochemistry 34 10807
[15] Ratmeyer L, Vinayak R, Zhong Y Y, Zon G and Wilson W D 1994 Biochemistry 33 5298
[16] Gyi J I, Gao D Q, Conn G L, Trent J O, Brown T and Lane A N 2003 Nucleic Acids Res. 31 2683
[17] Xiong Y and Sundaralingam M 2000 Nucleic Acids Res. 28 2171
[18] Gonzalez C, Stec W, Kobylanska A, Hogrefe R I, Reynolds M and James T L 1994 Biochemistry 33 11062
[19] Hall K B and McLaughlin L W 1991 Biochemistry 30 10606
[20] Cocco S, Yan J, Leger J F, Chatenay D and Marko J F 2004 Phys. Rev. E 70 011910
[21] O'Brien E J and MacEwan A W 1970 J. Mol. Biol. 48 243
[22] Herrero-Galan E, Fuentes-Perez M E, Carrasco C, Valpuesta J M, Carrascosa J L, Moreno-Herrero F and Arias-Gonzalez J R 2013 J. Am. Chem. Soc. 135 122
[23] Bizarro C V, Alemany A and Ritort F 2012 Nucleic Acids Res. 40 6922
[24] Sugimoto N, Nakano S-i, Katoh M, Matsumura A, Nakamuta H, Ohmichi T, Yoneyama M and Sasaki M 2002 Biochemistry 34 11211
[25] King G A, Gross P, Bockelmann U, Modesti M, Wuite G J L and Peterman E J G 2013 Proc. Nat. Acad. Sci. USA 110 3859
[26] Suresh G and Priyakumar U D 2014 Phys. Chem. Chem. Phys. 16 18148
[27] Hantz E, Larue V, Ladam P, Moyec L L, Gouyette C and Dinh T H 2001 Int. J. Biol. Macromol. 28 273
[28] Zhang X, Chen H, Le S, Rouzina I, Doyle P S and Yan J 2013 Proc. Natl. Acad. Sci. USA 110 3865
[29] Chen H, Fu H X and Koh C G 2008 J. Comput. Theor. Nanosci. 5 1381
[30] Bockelmann U, Essevaz-Roulet B and Heslot F 1997 Phys. Rev. Lett. (USA) 79 4489
[31] Belotserkovskii B P, Tornaletti S, D'Souza A D and Hanawalt P C 2018 DNA Repair 71 69
[32] Drolet M, Broccoli S, Rallu F, Hraiky C, Fortin C, Masse E and Baaklini I 2003 Front. Biosci. 8 D210
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[4] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[5] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[6] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[7] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[8] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[9] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[10] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
[11] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[12] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[13] Spectra properties of Yb3+, Er3+: Sc2SiO5 crystal
Yanyan Xue(薛艳艳), Lihe Zheng(郑丽和), Dapeng Jiang(姜大朋), Qinglin Sai(赛青林), Liangbi Su(苏良碧), Jun Xu(徐军). Chin. Phys. B, 2019, 28(3): 037802.
[14] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[15] Effect of P impurity on mechanical properties of NiAlΣ5 grain boundary: From perspectives of stress and energy
Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Jiang-Ge Deng(邓江革), Yan-Min Hu(胡艳敏), Qing-Gong Song(宋庆功). Chin. Phys. B, 2018, 27(3): 037105.
No Suggested Reading articles found!