Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 098103    DOI: 10.1088/1674-1056/26/9/098103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide

Cai-Xia Hou(侯彩霞)1,2, Xin-He Zheng(郑新和)1, Rui Jia(贾锐)2, Ke Tao(陶科)2, San-Jie Liu(刘三姐)1, Shuai Jiang(姜帅)2, Peng-Fei Zhang(张鹏飞)2, Heng-Chao Sun(孙恒超)2, Yong-Tao Li(李永涛)2
1 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  Atomic-layer-deposited (ALD) aluminum oxide (Al2O3) has demonstrated an excellent surface passivation for crystalline silicon (c-Si) surfaces, as well as for highly boron-doped c-Si surfaces. In this paper, water-based thermal atomic layer deposition of Al2O3 films are fabricated for c-Si surface passivation. The influence of deposition conditions on the passivation quality is investigated. The results show that the excellent passivation on n-type c-Si can be achieved at a low thermal budget of 250 ℃given a gas pressure of 0.15 Torr. The thickness-dependence of surface passivation indicates that the effective minority carrier lifetime increases drastically when the thickness of Al2O3 is larger than 10 nm. The influence of thermal post annealing treatments is also studied. Comparable carrier lifetime is achieved when Al2O3 sample is annealed for 15 min in forming gas in a temperature range from 400 ℃to 450 °C. In addition, the passivation quality can be further improved when a thin PECVD-SiNx cap layer is prepared on Al2O3, and an effective minority carrier lifetime of 2.8 ms and implied Voc of 721 mV are obtained. In addition, several novel methods are proposed to restrain blistering.
Keywords:  atomic layer deposition      Al2O3      surface passivation      effective minority carrier lifetime  
Received:  27 February 2017      Revised:  01 June 2017      Accepted manuscript online: 
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.65.Rv (Passivation)  
  88.40.jj (Silicon solar cells)  
Fund: Project supported by the Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515003), the National Natural Science Foundation of China (Grant Nos. 110751402347, 61274134, 51402064, 61274059, and 51602340), the University of Science and Technology Beijing (USTB) Start-up Program, China (Grant No. 06105033), the Beijing Municipal Innovation and Research Base, China (Grant No. Z161100005016095), the Fundamental Research Funds for the Central Universities, China (Grant Nos. FRF-UM-15-032 and 06400071), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2015387).
Corresponding Authors:  Xin-He Zheng, Rui Jia     E-mail:  xinhezheng@ustb.edu.cn;jiarui@ime.ac.cn

Cite this article: 

Cai-Xia Hou(侯彩霞), Xin-He Zheng(郑新和), Rui Jia(贾锐), Ke Tao(陶科), San-Jie Liu(刘三姐), Shuai Jiang(姜帅), Peng-Fei Zhang(张鹏飞), Heng-Chao Sun(孙恒超), Yong-Tao Li(李永涛) Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide 2017 Chin. Phys. B 26 098103

[1] Girisch R B M, Mertens R P and De Keersmaecker R F 1988 IEEE Trans. Electron Dev. 35 203
[2] Kotipalli R, Delamare R, Poncelet O, Tang X, Francis L A and Flandre D 2013 EPJ Photovolt. 4 45107
[3] Dingemans G, Engelhart P, Seguin R and Mandoc M M 2010 35th IEEE PVSC, Honolulu, Hawaii, USA, 20
[4] Zheng X, Yu X G and Yang D R 2013 Acta Phys. Sin. 62 198801 (in Chinese)
[5] Zhang X, Zhang X Z, Tan X Y, Yu Y and Wan C H 2012 Acta Phys. Sin. 61 147303 (in Chinese)
[6] Glunz S W, Biro D, Rein S and Warta W 1999 J. Appl. Phys. 86 683
[7] Jia X J, Zhou C L, Zhu J J, Zhou S and Wang W J 2016 Chin. Phys. B 25 127301
[8] Gao M, Du H W, Yang J, Zhao L, Xu J and Ma Z Q 2017 Chin. Phys. B 26 045201
[9] Vasilopoulou M, Georgiadou D G, Soultati A, Boukos N, Gardelis S and Palilis L C 2015 Adv. Energy Mater. 4 1400214
[10] Koushik D, Verhees W J, Kuang Y H, Veenstra S, Zhang D, Verheijen M A, Creatore M and Schropp R E 2017 Energy Environ. Sci. 10 91
[11] Fabregat-Santiago F, García-Cañadas J, Palomares E, Clifford J N, Haque S A, Durrant J R, Garcia-Belmonte G and Bisquert J 2004 J. Appl. Phys. 96 6903
[12] Richter A, Benick J and Hermle M 2013 IEEE J. Photovolt. 3 236
[13] Dingemans G and Kessels W M M 2012 J. Vac. Sci. Technol. A 30 040802
[14] Huang H, Lv J, Bao Y, Xuan R, Sun S, Sneck S, Li S, Modanese C, Savin H and Wang A 2017 Solar Energy Mater. Solar Cells 161 14
[15] Rahman T, Bonilla R S, Nawabjan A, Wilshaw P R and Boden S A 2017 Solar Energy Mater. Solar Cells 160 444
[16] Barbos C, Blanc-Pelissier D, Fave A, Blanquet E, Crisci A, Fourmond E, Albertini D, Sabac A, Ayadi K and Girard P 2015 Energy Procedia 77 558
[17] Ott A, Klaus J, Johnson J and George S 1997 Thin Solid Films 292 135
[18] Dillon A, Ott A, Way J and George S 1995 Surf. Sci. 322 230
[19] Groner M, Fabreguette F, Elam J and George S 2004 Chem. Mater. 16 639
[20] Sproul A B, Green M A and Stephens A W 1992 J. Appl. Phys. 72 4161
[21] Sinton R A and Cuevas A 1996 Appl. Phys. Lett. 69 2510
[22] Schroder D K 1997 IEEE Trans. Electron. Dev. 44 160
[23] Kerr M J and Cuevas A 2002 J. Appl. Phys. 91 2473
[24] Dingemans G and Kessels W M M 2010 Electrochem. Solid-State Lett. 13 H76
[25] Robertson J 2005 Rep. Prog. Phys. 69 327
[26] Zhang X L, Bang W, Zhao Y L, Chao B and Xia Y 2013 Chin. Phys. B 22 127303
[27] He Y, Dou Y N, Ma X G, Chen S B and Chu J H 2012 Acta Phys. Sin. 61 248102 (in Chinese)
[28] Albadri A M 2014 Thin Solid Films 562 451
[29] Dingemans G, Seguin R, Engelhart P, Sanden M C M V D and Kessels W M M 2010 Phys. Status Solidi (RRL) 4 10
[30] Dingemans G 2010 Appl. Phys. Lett. 97 042112
[31] Dingemans G, Beyer W, Sanden M C M V D and Kessels W M M 2010 Appl. Phys. Lett. 97 042112
[32] Peng Z W, Hsieh P T, Lin Y J, Huang C J and Li C C 2015 Energy Procedia 77 827
[33] Kühnhold-Pospischil S, Saint-Cast P, Richter A and Hofmann M 2016 Appl. Phys. Lett. 109 061602
[34] Zhang X, Liu B W, Xia Y, Li C B, Liu J and Shen Z N 2012 Acta Phys. Sin. 61 187303 (in Chinese)
[35] Schuldis D, Richter A, Benick J and Hermle M 2012 27th European Photovoltaic Solar Energy Conference and Exhibition 2012, Frankfurt, Germany, September, p. 1933
[36] Vermang B, Goverde H, Simons V, Wolf I D, Meersschaut J, Tanaka S, John J, Poortmans J and Mertens R 2012 38th IEEE Photovoltaic Specialists Conference, June 3-8, 2012, p. 001135
[1] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[2] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[3] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[4] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[5] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[6] Characterization and application in XRF of HfO2-coated glass monocapillary based on atomic layer deposition
Yan-Li Li(李艳丽), Ya-Bing Wang(王亚冰), Wei-Er Lu(卢维尔), Xiang-Dong Kong(孔祥东), Li Han(韩立), and Hui-Bin Zhao(赵慧斌). Chin. Phys. B, 2021, 30(5): 050703.
[7] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[8] Surface passivation in n-type silicon and its application insilicon drift detector
Yiqing Wu(吴怡清), Ke Tao(陶科), Shuai Jiang(姜帅), Rui Jia(贾锐), Ye Huang(黄也). Chin. Phys. B, 2020, 29(3): 037702.
[9] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[10] Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), and Qing He(何清)$. Chin. Phys. B, 2020, 29(11): 117701.
[11] Effect of source temperature on phase and metal–insulator transition temperature of vanadium oxide films grown by atomic layer deposition
Bingheng Meng(孟兵恒), Dengkui Wang(王登魁)†, Deshuang Guo(郭德双), Juncheng Liu(刘俊成), Xuan Fang(方铉), Jilong Tang(唐吉龙), Fengyuan Lin(林逢源), Xinwei Wang(王新伟), Dan Fang(房丹), and Zhipeng Wei(魏志鹏)‡. Chin. Phys. B, 2020, 29(10): 107102.
[12] Fluorescence spectra of colloidal self-assembled CdSe nano-wire on substrate of porous Al2O3/Au nanoparticles
Xin Zhang(张欣), Li-Ping Shao(邵丽萍), Man Peng(彭嫚), Zhong-Chen Bai(白忠臣), Zheng-Ping Zhang(张正平), Shui-Jie Qin(秦水介). Chin. Phys. B, 2019, 28(6): 068103.
[13] Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer
Shuaipu Zang(臧帅普), Yinglin Wang(王莹琳), Meiying Li(李美莹), Wei Su(苏蔚), Meiqi An(安美琦), Xintong Zhang(张昕彤), Yichun Liu(刘益春). Chin. Phys. B, 2018, 27(1): 018503.
[14] Influences of different oxidants on characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(6): 067701.
[15] Performance and reliability improvement of La2O3/Al2O3 nanolaminates using ultraviolet ozone post treatment
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Bin Sun(孙斌), Li Duan(段理), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(5): 057702.
No Suggested Reading articles found!