Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 093102    DOI: 10.1088/1674-1056/26/9/093102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

First-principles study of solute diffusion in Ni3Al

Shaohua Liu(刘少华)1, Zi Li(李孜)2, Chongyu Wang(王崇愚)3
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3 Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  

Using first-principles calculations in combination with Wagner-Schottky and kinetic Monte Carlo methods, the diffusion behaviors of solutes via various vacancy-mediated diffusion mechanisms in L12 γ'-Ni3Al were investigated. The formation energies of the point defects and the migration energies for solutes were calculated. Adding alloying elements can decrease the defect-formation energies of Nim Al, increase the defect-formation energies of AlNi, and have little effect on the formation energy of VNi. The migration energies of solutes are related with the site preference and the diffusion mechanism. The diffusion coefficients of Ni, Al, and solutes were calculated, and the concentration of antisite defects plays a crucial role in the elemental diffusion.

Keywords:  nickel-based superalloy      diffusion      Ni3Al      first-principles  
Received:  03 June 2017      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20  
  66.30.-h (Diffusion in solids)  
Fund: 

Project supported by Beijing Municipality Science and Technology Commission, China (Grant No. D161100002416001) and the National Key R&D Program of China (Grant No. 2017YFB0701502).

Corresponding Authors:  Chongyu Wang     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Shaohua Liu(刘少华), Zi Li(李孜), Chongyu Wang(王崇愚) First-principles study of solute diffusion in Ni3Al 2017 Chin. Phys. B 26 093102

[1] Reed R C 2006 The Superalloys: Fundamentals and Applications (New York: Cambridge University Press)
[2] Pollock T M 2016 Nat. Mater. 15 809
[3] Suzuki A, Inui H and Pollock T M 2015 Annu. Rev. Mater. Res. 45 345
[4] Jiang L, Li S and Han Y 2017 IOP Conf. Ser.: Mater. Sci. Eng. 182 012059
[5] Liu Z and Gao W 2001 Oxid. Met. 55 481
[6] Nathal M V and Ebert L J 1985 Metall. Trans. A 16 1863
[7] Mishima Y, Ochiai S, Hamao N, Yodogawa M and Suzuki T 1986 Transactions of the Japan Institute of Metals 27 648
[8] Kamaraj M 2003 Sadhana 28 115
[9] Kovarik L, Unocic R R, Li J and Mills M J 2009 JOM 61 42
[10] Eggeler Y M, Müller J, Titus M S, Suzuki A, Pollock T M and Spiecker E 2016 Acta Mater. 113 335
[11] Titus M S, Mottura A, Babu Viswanathan G, Suzuki A, Mills M J and Pollock T M 2015 Acta Mater. 89 423
[12] Divinski S V, Frank S, Södervall U and Herzig C 1998 Acta Mater. 46 4369
[13] Cserháti C, Szabó I A, Márton Z and Erdélyi G 2002 Intermetallics 10 887
[14] Shi Y, Frohberg G and Wever H 1995 Phys. Stat. Sol. A 152 361
[15] Fujiwara K and Horita Z 2002 Acta Mater. 50 1571
[16] Cserháti C, Paul A, Kodentsov A A, van Dal M J H and van Loo F J J 2003 Intermetallics 11 291
[17] Minamino Y, Yoshida H, Jung S B, Hirao K and Yamane T 1997 Defect and Diffusion Forum 143-147 257
[18] Chen C, Zhang L, Xin J, Wang Y, Du Y, Luo F, Zhang Z, Xu T and Long J 2015 J. Alloys Compd. 645 259
[19] Moniruzzaman M, Fukaya H, Murata Y, Tanaka K and Inui H 2012 Materials Transactions 53 2111
[20] Mabruri E, Sakurai S, Murata Y, Koyama T and Morinaga M 2008 Materials Transactions 49 1441
[21] Garimella N, Ode M, Ikeda M, Murakami H and Sohn Y H 2009 J. Phase Equilib. Diffus. 30 246
[22] Ikeda T, Almazouzi A, Numakura H, Koiwa M, Sprengel W and Nakajima H 1998 Acta Mater. 46 5369
[23] Watanabe M, Horita Z and Nemoto M 1997 Defect and Diffusion Forum 143-147 345
[24] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[25] Blöchl P E 1994 Phys. Rev. B 50 17953
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[29] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[30] Mehrer H 2007 Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Process (New York: Springer Berlin Heidelberg)
[31] Schottky W and Wagner C 1931 Zeitschr. Phys. Chem. B 11 163
[32] Jiang C, Sordelet D J and Gleeson B 2006 Acta Mater. 54 1147
[33] Eyring H 1935 J. Chem. Phys. 3 107
[34] Vineyard G H 1957 J. Phys. Chem. Solids 3 121
[35] Hänggi P, Talkner P and Borkovec M 1990 Rev. Mod. Phys. 62 251
[36] Sun M, Li Z, Zhu G Z, Liu W Q, Liu S H and Wang C Y 2016 Commun. Comput. Phys. 20 603
[37] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[38] Voter A F 2007 Radiation Effects in Solids (Dordrecht: Springer Netherlands) pp. 1-23
[39] Zhang X, Deng H, Xiao S, Tang J, Deng L and Hu W 2014 J. Alloys Compd. 612 361
[40] Gopal P and Srinivasan S G 2012 Phys. Rev. B 86 014112
[41] Yu S, Wang C Y, Yu T and Cai J 2007 Physica B 396 138
[42] Badura-Gergen K and Schaefer H E 1997 Phys. Rev. B 56 3032
[43] Numakura H, Ikeda T, M K and Almazouzi A 1998 Philos. Mag. A 77 887
[44] Wang T M, Shimotomai M and Doyama M 1984 J. Phys. F: Met. Phys. 14 37
[45] Gupta D 2005 Diffusion Processes in Advanced Technological Materials (Heidelberg: Springer Berlin Heidelberg)
[46] Kao C R and Chang Y A 1993 Intermetallics 1 237
[47] Divinski S V and Larikov L N 1997 J. Phys.: Condens. Matter 9 7873
[48] Chen G X, Wang D D, Zhang J M, Huo H P and Xu K W 2008 Physica B 403 3538
[49] Zhang X and Wang C Y 2009 Acta Mater. 57 224
[50] Liu S H, Liu C P, Liu W Q, Zhang X N, Yan P and Wang C Y 2016 Philos. Mag. 96 2204
[51] Liu S, Liu C, Ge L, Zhang X, Yu T, Yan P and Wang C 2017 Scr. Mater. Submitted
[52] Ruban A V and Skriver H L 1997 Phys. Rev. B 55 856
[53] Jiang C and Gleeson B 2006 Scr. Mater. 55 433
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[10] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[11] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[12] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[13] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[14] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[15] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
No Suggested Reading articles found!