Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087802    DOI: 10.1088/1674-1056/26/8/087802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

Shuai Jiang(姜帅)1,2, Rui Jia(贾锐)1, Ke Tao(陶科)1, Caixia Hou(侯彩霞)1, Hengchao Sun(孙恒超)1, Zhiyong Yu(于志泳)3, Yongtao Li(李勇滔)1
1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Jiangxi Science & Technology Normal University, Nanchang 330013, China
Abstract  

Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance.

Keywords:  polycrystalline silicon      SiO2      solar cell      passivation      simulation      IBC  
Received:  21 March 2017      Revised:  09 May 2017      Accepted manuscript online: 
PACS:  78.56.-a (Photoconduction and photovoltaic effects)  
  77.55.df (For silicon electronics)  
  82.20.Wt (Computational modeling; simulation)  
  82.45.Bb (Corrosion and passivation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11104319, 11274346, 51202285, 61234005, 51172268, 51602340, 61274059, and 51402347), the Solar Energy Action Plan of Chinese Academy of Sciences (Grant Nos. Y1YT064001, Y1YF034001, and Y2YF014001), the Graduate and College Student's Innovative Project (Grant No. YC2016-X19), the Project of Beijing Municipal Science and Technology Commission (Grant No. Z151100003515003), and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences.

Corresponding Authors:  Shuai Jiang, Rui Jia     E-mail:  jiangshuai@ime.ac.cn;jiarui_solar@souhu.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Shuai Jiang(姜帅), Rui Jia(贾锐), Ke Tao(陶科), Caixia Hou(侯彩霞), Hengchao Sun(孙恒超), Zhiyong Yu(于志泳), Yongtao Li(李勇滔) Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations 2017 Chin. Phys. B 26 087802

[1] Cast P S, Padilla M, Kimmerle A and Reichel C 2014 IEEE J. Photovolt. 4 114
[2] Kerschaver E V and Beaucarne G 2006 Prog. Photovoltaics Res. Appl. 14 107
[3] Smith D D, Cousins P, Westerberg S, Tabajonda R D J, Aniero G andShen Y C 2014 IEEE J. Photovolt. 4 1465
[4] Fong K C, Teng K, McIntosh K R, Blakers A W, Franklin E, Zin N and Fell A 2013 28th EU-PVSEC, 2013, Paris, France, p. 851
[5] O'Sullivan B J, Debucquoy M, Singh S, Castro A U D, Payo M R, Posthuma N E, Gordon I, Szlufcik J and Poortmans J 2013 28th EU-PVSEC, 2013, Paris, Frrance, p. 956
[6] Halm A, Mihailetchi V D, Galbiati G, Koduvelikulathu L J, Roescu R, Comparotto C, Kopecek R, Peter K and Libal J 2012 27th EU-PVSEC, 2012, Frankfurt, Germany, p. 20
[7] Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E and Okamoto S 2014 IEEE J. Photovolt. 4 1433
[8] Krr M J and Cuevas A 2002 Semicond. Sci. Technol. 17 35
[9] Aberle A G 2000 Prog. Photovoltaics Res. Appl. 8 473
[10] Ingenito A, Isabella O and Zeman M 2015 Prog. Photovoltaics Res. Appl. 23 1649
[11] Schmidt J and Kerr M 2001 Sol. Energ. Mater. Sol. Cells 65 585
[12] Kerr M J, Schmidt J and Cuevas A 2001 Appl. Phys. Lett. 89 3821
[13] Hoex B, Heil S B S, Langereis E, van de Sanden M C M and Kessels W M M 2006 Appl. Phys. Lett. 89 042112
[14] Bonilla R S and Wilshaw P R 2014 Appl. Phys. Lett. 104 232903
[15] Yang X, Múler R, Xu L J, Bi Q, Weber K, Franklin E and Benick J 2015 IEEE J. Photovolt. 5 87
[16] Cesar I, Guillevin N, Burgers A R, Mewe A A, Bende E E, Rosca V, Aken B V, Koppes M, Anker J, Geerligs L J and Weeber A W 2014 29th European Photovoltaic Solar Energy Conference and Exhibition, 2014, Amsterdam, Netherlands, p. 633
[17] Roulston D J, Arora N D and Chamberlain S G 1982 IEEE T. Electron Dev. 29 284
[18] Law M E, Solley E, Liang M and Burk D E 1991 IEEE Electron Dev. Lett. 12 401
[19] Fossum J G and Lee D S 1982 Solid State Electron. 25 741
[20] Slotboom J W and de Graaff H C 1976 Solid State Electron 19 857
[1] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[2] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[3] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[4] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[5] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[6] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[7] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[8] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[9] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
Shuaishuai Feng(冯帅帅), Shasha Lv(吕沙沙), Liang Chen(陈良), and Zhengcao Li(李正操). Chin. Phys. B, 2021, 30(5): 056105.
[10] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[11] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[12] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[13] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[14] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[15] GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor
Bin Zhang(张彬), Tian-Ci Xie(谢天赐), Zhuang Qin(秦壮), Hao-Peng Li(李昊鹏), Song Li(李松), Wen-Hui Zhao(赵文辉), Zi-Yin Chen(陈子印), Jun Xu(徐军), Elfed Lewis, and Wei-Min Sun(孙伟民). Chin. Phys. B, 2021, 30(4): 048701.
No Suggested Reading articles found!