Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087802    DOI: 10.1088/1674-1056/26/8/087802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

Shuai Jiang(姜帅)1,2, Rui Jia(贾锐)1, Ke Tao(陶科)1, Caixia Hou(侯彩霞)1, Hengchao Sun(孙恒超)1, Zhiyong Yu(于志泳)3, Yongtao Li(李勇滔)1
1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Jiangxi Science & Technology Normal University, Nanchang 330013, China
Abstract  

Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance.

Keywords:  polycrystalline silicon      SiO2      solar cell      passivation      simulation      IBC  
Received:  21 March 2017      Revised:  09 May 2017      Accepted manuscript online: 
PACS:  78.56.-a (Photoconduction and photovoltaic effects)  
  77.55.df (For silicon electronics)  
  82.20.Wt (Computational modeling; simulation)  
  82.45.Bb (Corrosion and passivation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11104319, 11274346, 51202285, 61234005, 51172268, 51602340, 61274059, and 51402347), the Solar Energy Action Plan of Chinese Academy of Sciences (Grant Nos. Y1YT064001, Y1YF034001, and Y2YF014001), the Graduate and College Student's Innovative Project (Grant No. YC2016-X19), the Project of Beijing Municipal Science and Technology Commission (Grant No. Z151100003515003), and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences.

Corresponding Authors:  Shuai Jiang, Rui Jia     E-mail:  jiangshuai@ime.ac.cn;jiarui_solar@souhu.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Shuai Jiang(姜帅), Rui Jia(贾锐), Ke Tao(陶科), Caixia Hou(侯彩霞), Hengchao Sun(孙恒超), Zhiyong Yu(于志泳), Yongtao Li(李勇滔) Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations 2017 Chin. Phys. B 26 087802

[1] Cast P S, Padilla M, Kimmerle A and Reichel C 2014 IEEE J. Photovolt. 4 114
[2] Kerschaver E V and Beaucarne G 2006 Prog. Photovoltaics Res. Appl. 14 107
[3] Smith D D, Cousins P, Westerberg S, Tabajonda R D J, Aniero G andShen Y C 2014 IEEE J. Photovolt. 4 1465
[4] Fong K C, Teng K, McIntosh K R, Blakers A W, Franklin E, Zin N and Fell A 2013 28th EU-PVSEC, 2013, Paris, France, p. 851
[5] O'Sullivan B J, Debucquoy M, Singh S, Castro A U D, Payo M R, Posthuma N E, Gordon I, Szlufcik J and Poortmans J 2013 28th EU-PVSEC, 2013, Paris, Frrance, p. 956
[6] Halm A, Mihailetchi V D, Galbiati G, Koduvelikulathu L J, Roescu R, Comparotto C, Kopecek R, Peter K and Libal J 2012 27th EU-PVSEC, 2012, Frankfurt, Germany, p. 20
[7] Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E and Okamoto S 2014 IEEE J. Photovolt. 4 1433
[8] Krr M J and Cuevas A 2002 Semicond. Sci. Technol. 17 35
[9] Aberle A G 2000 Prog. Photovoltaics Res. Appl. 8 473
[10] Ingenito A, Isabella O and Zeman M 2015 Prog. Photovoltaics Res. Appl. 23 1649
[11] Schmidt J and Kerr M 2001 Sol. Energ. Mater. Sol. Cells 65 585
[12] Kerr M J, Schmidt J and Cuevas A 2001 Appl. Phys. Lett. 89 3821
[13] Hoex B, Heil S B S, Langereis E, van de Sanden M C M and Kessels W M M 2006 Appl. Phys. Lett. 89 042112
[14] Bonilla R S and Wilshaw P R 2014 Appl. Phys. Lett. 104 232903
[15] Yang X, Múler R, Xu L J, Bi Q, Weber K, Franklin E and Benick J 2015 IEEE J. Photovolt. 5 87
[16] Cesar I, Guillevin N, Burgers A R, Mewe A A, Bende E E, Rosca V, Aken B V, Koppes M, Anker J, Geerligs L J and Weeber A W 2014 29th European Photovoltaic Solar Energy Conference and Exhibition, 2014, Amsterdam, Netherlands, p. 633
[17] Roulston D J, Arora N D and Chamberlain S G 1982 IEEE T. Electron Dev. 29 284
[18] Law M E, Solley E, Liang M and Burk D E 1991 IEEE Electron Dev. Lett. 12 401
[19] Fossum J G and Lee D S 1982 Solid State Electron. 25 741
[20] Slotboom J W and de Graaff H C 1976 Solid State Electron 19 857
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[7] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[8] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[13] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[14] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!