Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087701    DOI: 10.1088/1674-1056/26/8/087701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvement of the high-κ/Ge interface thermal stability using an in-situ ozone treatment characterized by conductive atomic force microscopy

Ji-Bin Fan(樊继斌)1, Xiao-Jiao Cheng(程晓姣)1, Hong-Xia Liu(刘红侠)2, Shu-Long Wang(王树龙)2, Li Duan(段理)1
1 School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China;
2 School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China
Abstract  

In this work, an in-situ ozone treatment is carried out to improve the interface thermal stability of HfO2/Al2O3 gate stack on germanium (Ge) substrate. The micrometer scale level of HfO2/Al2O3 gate stack on Ge is studied using conductive atomic force microscopy (AFM) with a conductive tip. The initial results indicate that comparing with a non in-situ ozone treated sample, the interface thermal stability of the sample with an in-situ ozone treatment can be substantially improved after annealing. As a result, void-free surface, low conductive spots, low leakage current density, and relative high breakdown voltage high-κ/Ge are obtained. A detailed analysis is performed to confirm the origins of the changes. All results indicate that in-situ ozone treatment is a promising method to improve the interface properties of Ge-based three-dimensional (3D) devices in future technology nodes.

Keywords:  high-κ      conductive atomic force microscopy      in-situ ozone      annealing  
Received:  06 March 2017      Revised:  14 April 2017      Accepted manuscript online: 
PACS:  77.55.D-  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61604016), China Postdoctoral Science Foundation (Grant No. 2017M613028), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 310831161003 and CHD2017ZD142).

Corresponding Authors:  Ji-Bin Fan     E-mail:  jan@chd.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Ji-Bin Fan(樊继斌), Xiao-Jiao Cheng(程晓姣), Hong-Xia Liu(刘红侠), Shu-Long Wang(王树龙), Li Duan(段理) Improvement of the high-κ/Ge interface thermal stability using an in-situ ozone treatment characterized by conductive atomic force microscopy 2017 Chin. Phys. B 26 087701

[1] Zhang R, Tang X, Yu X and Li J 2016 IEEE Electron Dev. Lett. 37 831
[2] Asahara R, Hideshima I, Oka H, Minoura Y, Ogawa S, Yoshigoe A, Teraoka Y, Hosoi T, Shimura T and Watanabe H 2015 Appl. Phys. Lett. 106 233503
[3] Tan T T, Liu Z T and Li Y Y 2011 Chin. Phys. Lett. 28 086803
[4] Shin Y, Chung W, Seo Y, Lee C H, Sohn D K and Cho B J 2014 VLSI Symp. Tech. Dig. pp. 1-2
[5] Takagi S, Noguchi M, Kim M, Kim S H, Chang C Y, Yokoyama M, Nishi K, Zhang R, Ke M and Takenaka M 2016 Solid-State Electron. 125 82
[6] Kita K, Suzuki S, Nomura H, Takahashi T, Nishimura T and Toriumi A 2008 Jpn. J. Appl. Phys. 47 2349
[7] Golias E, Tsetseris L, Dimoulas A and Pantelides S T 2011 Microelectron. Eng. 88 427
[8] Xie Q, Deduytsche D, Schaekers M, Caymax M, Delabie A, Qu X P and Detavernier C 2011 Electochem. Solid-State Lett. 14 G20
[9] Fan J B, Ding X F, Liu H X, Xie P F, Zhang Y T and Liao Q L 2016 Chin. Phys. B 25 027702
[10] Ke M, Yu X, Chang C, Takenaka M and Takagi S 2016 Appl. Phys. Lett. 109 032101
[11] Zhang R, Huang P C, Lin J C, Taoka N, Takenaka M and Takagi S 2013 IEEE Trans. Electron Dev. 60 927
[12] Ando T, Hashemi P, Bruley J, Rozen J, Ogawa Y, Koswatta S, Chan K, Cartier E A, Mo R and Narayananet V 2017 IEEE Electron Dev. Lett. 38 303
[13] Yang X, Wang S K, Zhang X, Sun B, Zhao W, Chang H D, Zeng Z H and Liu H G 2014 Appl. Phys. Lett. 105 092101
[14] Bayerl A, Lanza M, Aguilera L, Porti M, Nafría M, Aymerich X and Gendt S 2013 Microelectron. Reliab. 53 867
[15] Adachi M, Kato Y, Kato K, Sakashita M, Kondo H and Takeuchi W, Nakatsuka O and Zaima S 2011 Jpn. J. Appl. Phys. 50 584
[16] Wang S K, Kita K, Lee C H, Tabata T, Nishimura T, Nagashio K and Toriumi A 2010 J. Appl. Phys. 108 054104
[17] Wang S K, Kita K, Nishimura T, Nagashio K and Toriumi A 2011 Jpn. J. Appl. Phys. 50 10PE04
[18] Chang H S, Baek S K, Park H, Hwang H, Oh J H, Shin W S, Yeo J H, Hwang K H, Nam S W, Lee H D, Song C L, Moonand D W and Cho M H 2004 Electochem. Solid-State Lett. 7 F42
[19] Fei C, Liu H, Wang X, Zhao L, Zhao D and Feng X 2017 Nanoscale Res. Lett. 12 218
[20] Couso C, Iglesias V, Porti M and Claramunt S 2016 IEEE Electron Dev. Lett. 37 640
[21] Rao P K, Park B, Lee S T, Noh Y K, Kim M D and Oh J 2011 J. Appl. Phys. 110 025015
[22] Van Elshocht S, Caymax M, Conard T, De Gendt S, Hoflijk I, Houssa M, De Jaeger B, Van Sttebergen J, Heyns M and Merius M 2006 Appl. Phys. Lett. 88 141904
[23] Wang S K, Kita K, Nishimura T, Nagashio K and Toriumi A 2011 Jpn. J. Appl. Phys. 50 04DA01
[24] Houssa M, Pourtois G, Caymax M, Meuris M and Heyns M M 2008 Appl. Phys. Lett. 92 242101
[25] Shibayama S, Kato K, Sakashita M, Takeuchi W, Nakatsuka O and Zaima S 2012 Thin Solid Films 520 3397
[26] Bellenger F, Merckling C, Penaud J, Houssa M, Caymax M, Meuris M, De Meyer K and Heyns M M 2008 ECS Trans. 16 411
[1] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[2] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[3] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[4] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[5] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[6] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets"
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[7] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
[8] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[9] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
[10] Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), and Qing He(何清)$. Chin. Phys. B, 2020, 29(11): 117701.
[11] On the time-independent Hamiltonian in real-time and imaginary-time quantum annealing
Jie Sun(孙杰)† and Songfeng Lu(路松峰)‡. Chin. Phys. B, 2020, 29(10): 100303.
[12] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[13] Control on β conformation of poly(9,9-di-n-octylfluorene) via solvent annealing
Zhi Chao Zhang(张志超), Bing Yue Zhang(张丙悦), Yu Yan Weng(翁雨燕), Tian Hui Zhang(张天辉). Chin. Phys. B, 2019, 28(7): 076101.
[14] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[15] High quality NbTiN films fabrication and rapid thermal annealing investigation
Huan Ge(葛欢), Yi-Rong Jin(金贻荣), Xiao-Hui Song(宋小会). Chin. Phys. B, 2019, 28(7): 077402.
No Suggested Reading articles found!