Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087702    DOI: 10.1088/1674-1056/26/8/087702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Synergistic effects of electrical and optical excitations on TiO2 resistive device

Qi Mao(毛奇)1,2, Wei-Jian Lin(林伟坚)1, Ke-Jian Zhu(朱科建)1, Yang Meng(孟洋)1,2, Hong-Wu Zhao(赵宏武)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The influences of electrical and optical excitations on the conductivity characteristic are investigated in bulk and edge devices of ITO/TiO2/ITO structure. Driven by the electrical and optical stimuli independently, the conductivity relaxation behaviors of the pristine resistive state (PRS) are observed and ascribed to the electron trapping and the oxygen transport processes. For a resistive switching (RS) device, the conductance change under optical illumination is about two orders of magnitude smaller than the conductance change corresponding to the variation of background current due to the emergence of a great number of oxygen vacancies in the RS device. With the illumination being off, the conductance slowly decays, which suggests that the oxygen diffusion process dominates the conductance relaxation. The difference in conductance relaxation between the bulk and edge devices indicates that the oxygen exchange plays a critical role in the relaxation process of conductivity. The synergistic effects of both electrical and optical excitations on the RS devices could be used for novel applications in integrated optoelectronic memory devices.

Keywords:  resistance switching      photoconductance      relaxation      oxygen vacancy  
Received:  24 March 2017      Revised:  18 April 2017      Accepted manuscript online: 
PACS:  77.80.Fm (Switching phenomena)  
  72.40.+w (Photoconduction and photovoltaic effects)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
Fund: 

Project supported by the National Key Basic Research Project of China (Grant Nos. 2013CB921700 and 2016YFA0300600), the National Natural Science Foundation of China (Grant No. 11274375), and the Fund from Chinese Academy of Sciences (Grant No. KJCX2-YW-W24).

Corresponding Authors:  Qi Mao     E-mail:  maoqi2012@gmail.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Qi Mao(毛奇), Wei-Jian Lin(林伟坚), Ke-Jian Zhu(朱科建), Yang Meng(孟洋), Hong-Wu Zhao(赵宏武) Synergistic effects of electrical and optical excitations on TiO2 resistive device 2017 Chin. Phys. B 26 087702

[1] Dearnaley G, Stoneham A M and Morgan D V 1970 Rep. Prog. Phys. 33 1129
[2] Rozenberg M J, Inoue I H and Sánchez M J 2004 Phys. Rev. Lett. 92 178302
[3] Waser R and Aono M 2007 Nat. Mater. 6 833
[4] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[5] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N and Williams R S 2009 Nanotechnology 20 215201
[6] Bae Y C, Lee A R, Kwak J S, Im H, Do Y H and Hong J P 2011 Appl. Phys. A 102 1009
[7] Raghavan N, Pey K Let and Liu W H, Wu X, L X and Bosman M 2011 Microelectronic Engineering 88 1124
[8] Nian Y B, Strozier J, Wu N J, Chen X and Ignatiev A 2007 Phys. Rev. Lett. 98 146403
[9] Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R and Williams R S 2009 J. Appl. Phys. 106 074508
[10] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[11] Golego N, Studenikin S A and Cocivera M 2000 Phys. Rev. B 61 8262
[12] Zhu Q, Xie C S, Li H Y, Zhang J and Zeng D W 2015 Chem. Mater. 27 2861
[13] Luo J J, Adler A U, Mason T O, Buchholz D B, Chang R P H and Grayson M 2013 J. Appl. Phys. 113 153709
[14] Huo N J, Yang S X, Wei Z M and Li J B 2013 J. Mater. Chem. C 1 3999
[15] Ungureanu M, Zazpe R, Golmar F, Stoliar P, Llopis R, Casanova F and Hueso L E 2012 Adv. Mater. 24 2496
[16] Park J, Lee S and Yong K 2012 Nanotechnology 23 385707
[17] Retamal J R D, Kang C F, Ho C H, Ke J J, Chang W Y and He J H 2014 Appl. Phys. Lett. 105 253111
[18] Tan H W, Liu G, Zhu X J, Yang H L, Chen B, Chen X X, Shang J, Lu W D, Wu Y H and Li R W 2015 Adv. Mater. 27 2797
[19] Borkar H, Thakre A, Kushvaha S S, Aloysius R P and Kumar A 2015 RSC Adv. 5 35046
[20] Wei L, Li G Q and Zhang W F 2016 J. Phys. D: Appl. Phys. 49 045101
[21] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W and Chen D M 2010 Chin. Phys. B 19 037304
[22] Takeuchi M 1979 Phys. Stat. Sol. (a) 55 653
[23] Bansal N P and Doremus R H 1986 Handbook of Glass Properties (New York: Academic Press) p. 44
[24] Jeong D S, Schroeder H and Waser R 2009 Phys. Rev. B 79 195317
[25] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Lau C N and Williams R S 2008 Nat. Nanotechnol. 3 429
[26] Chang Y F, Ji L, Wang Y Z, Chen P Y, Zhou F, Xue F, Fowler B, Yu E T and Lee J C 2013 Appl. Phys. Lett. 103 193508
[27] Fowler B W, Chang Y F, Zhou Fei, Wang Y Z, Chen P Y, Xue F, Chen Y T, Bringhurst B, Pozder S and Lee J C 2015 RSC Adv. 5 21215
[28] Schulman A, Rozenberg M J and Acha C 2012 Phys. Rev. B 86 104426
[29] Chang T, Jo S H and Lu W 2011 ACS Nano 5 7669
[30] Das N, Tsui S, Xue Y Y, Wang Y Q and Chu C W 2009 Phys. Rev. B 80 115411
[31] Zhang H J, Zhang X P, Zhao Y G 2009 Chin. Phys. Lett. 26 077303
[32] Bieger T, Maier J and Waser R 1992 Sensors and Actuators B: Chemical 7 763
[33] Merkle R and Maier J 2008 Angew. Chem. Int. Ed. 47 3874
[34] Redfield and Bube R H 1996 Photo-induced Defects in Semiconductors (New York: Cambridge University Press) p. 66
[35] Kim J Y, Yu K M, Jeong S H, Yun E J and Bae B S 2014 Can. J. Phys. 92 611
[36] Moazzami K, Murphy T E, Phillips J D, Cheung M C K and Cartwright A N 2006 Semicond. Sci. Technol. 21 717
[37] Yang C Q, Zhu Q, Zhang S P, Zou Z J, Tian K and Xie C S 2014 Appl. Surf. Sci. 297 116
[38] Sakaguchik, Shimakawak K and Hatanaka Y 2006 Jpn. J. Appl. Phys. 45 4183
[39] Wu T H, Cheng I C, Hsu C C and Chen J Z 2015 J. Alloys Compd. 628 68
[40] Sharma P, Sreenivas K and Rao K V 2003 J. Appl. Phys. 93 3963
[41] Ahn S E, Lee J S, Kim H, Kim S, Kang B H, Kim K H and Kim G T 2004 Appl. Phys. Lett. 84 5022
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[4] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[7] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[8] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[9] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[10] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[11] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[12] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[13] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[14] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[15] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
No Suggested Reading articles found!