Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 023301    DOI: 10.1088/1674-1056/26/2/023301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field

Chun-Zhen Fan(范春珍)1, Shuang-Mei Zhu(朱双美)1,2, Hao-Yi Xin(辛昊毅)1
1 School of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450052, China;
2 College of Science, Henan Institute of Engineering, Zhengzhou 451191, China
Abstract  We experimentally fabricate a non-spherical Ag and Co surface-enhanced Raman scattering (SERS) substrate, which not only retains the metallic plasmon resonant effect, but also possesses the magnetic field controllable characteristics. Raman detections are carried out with the test crystal violet (CV) and rhodamine 6G (R6G) molecules with the initiation of different magnitudes of external magnetic field. Experimental results indicate that our prepared substrate shows a higher SERS activity and magnetic controllability, where non-spherical Ag nanoparticles are driven to aggregate effectively by the magnetized Co and plenty of hot-spots are built around the metallic Ag nanoparticles, thereby leading to the enhancement of local electromagnetic field. Moreover, when the external magnetic field is increased, our prepared substrate demonstrates excellent SERS enhancement. With the 2500 Gs and 3500 Gs (1 Gs=10-4 T) magnetic fields, SERS signal can also be obtained with the detection limit lowering down to 10-9 M. These results indicate that our proposed magnetic field controlled substrate enables us to freely achieve the enhanced and controllable SERS effect, which can be widely used in the optical sensing, single molecule detection and bio-medical applications.
Keywords:  magneto-optical materials      tunable      surface-enhanced Raman scattering  
Received:  11 August 2016      Revised:  15 November 2016      Published:  05 February 2017
PACS:  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
  52.38.Bv (Rayleigh scattering; stimulated Brillouin and Raman scattering)  
  68.49.-h (Surface characterization by particle-surface scattering)  
Fund: Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant No. 162102210164), the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002), the National Natural Science Foundations of China (Grant Nos. 11574276, 11404291, and 11604079), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 17HASTIT0).
Corresponding Authors:  Chun-Zhen Fan     E-mail:  chunzhen@zzu.edu.cn

Cite this article: 

Chun-Zhen Fan(范春珍), Shuang-Mei Zhu(朱双美), Hao-Yi Xin(辛昊毅) Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field 2017 Chin. Phys. B 26 023301

[1] Kim Z H 2014 Front. Phys. 9 25
[2] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[3] Fang Y, Zhang Z and Sun M 2016 Rev. Sci. Instrum. 87 033104
[4] Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E and Li T 2005 Phys. Chem. B 109 13857
[5] Chang S, Ko H, Gunawidjaj R and Tsukruk V V 2011 J. Phys. Chem. C 115 4387
[6] Botta R, Upender G, Sathyavathi R, Rao D N and Bansal C 2013 Mater. Chem. Phys. 137 699
[7] Tian C F, You H J and Fang J X 2014 Chin. Phys. B 23 087801
[8] Liu M, Sun L, Cheng C, H Hu, Shen Z and Fan H J 2011 Nanoscale 3 3627
[9] Li X, Hu H, Li D, Shen Z, Xiong Q, Li Su and Fan H J 2012 Appl. Mater. Interf. 4 2180
[10] Huang Y F, Zhu H P, Liu G K, Wu D Y, Ren B and Tian Z Q 2010 J. Am. Chem. Soc. 132 9244
[11] Yang Z, Zhang L, You H, Li Z, Fang J 2014 Part. Part. Syst. Charact. 31 390
[12] You H, Zhang F, Liu Z, and Fang J 2014 ACS Catal. 4 2829
[13] Liu Z, Zhang F, Yang Z, You H, Tian C, Li Z and Fang J 2013 J. Mater. Chem. C 1 5567
[14] Huang X J, Yarimag O, Kim J H and Choi Y K 2009 J. Mater. Chem. 19 478
[15] Wang L, Imura M and Yamauchi Y 2012 Cryst. Eng. Comm. 14 7594
[16] Tian Z Q, Yang Z L, Ren B, Li J F, Zhang Y, Lin X F, Hu J W and Wu D Y 2006 Faraday Discuss. 132 159
[17] Sajanlal P R, Sreeprasad T S, Samal A K and Pradeep T 2011 Nano Rev. 2 5883
[18] Liu D, Li C, Zhou F, Zhang T, Zhang H, Li X, Duan G, W Cai and Y Li 2015 Sci. Rep. 5 7686
[19] Hartland G, Okamoto H, Orrit M and Zijlstra P 2013 Phys. Chem. Chem. Phys. 15 4090
[20] Zhao J, Lin J, Li X, Zhao G and Zhang W 2015 Appl. Surf. Sci. 347 514
[21] Ma F D, Wang S J, Smith L and Wu N 2012 Adv. Func. Mater. 22 4334
[22] Zhu S M, Fan C Z, Wang J Q, He J N and Liang E J 2015 J. Colloid Interface Sci. 438 116
[23] Huang J P and Yu K W 2006 Phys. Rep. 431 87
[24] Guo H Y, Zhao A W, Gao Q, Li D, Zhang M F, Gan Z B, Wang D P, Tao W Y and Chen X C 2014 J. Nanopart. Res. 16 2538
[25] Yan J M, Zhang X B, Akita T, Haruta M and Xu Q 2010 J. Am. Chem. Soc. 132 5326
[26] McKeown J T, Wu Y Y, Fowlkes J D, Rack P D and Campbell G H 2015 Adv. Mater. 27 1060
[27] Takahashi M, Mohan P, Nakade A, Higashimine K, Mott D, Hamada T, Matsumura K, Taguchi T and Maenosono S Y 2015 Langmuir 31 2228
[28] Zhu S M, Fan C Z, Wang J Q, He J N and Liang E J 2015 J. Colloid Interface Sci. 438 116
[29] Liang X M and Zhao L J 2012 RSC Adv. 2 5485
[30] Sun Y and Xia Y N 2007 Acc. Chem. Res. 40 1067
[31] Wiley B, Herricks T, Sun Y and Xia Y 2004 Nano Lett. 4 1733
[32] Zhou F, Li Z and Liu Y 2008 J. Phys. Chem. C 112 20233
[33] Creighton J A and Eadon D G 1991 Faraday Trans. 87 3881
[34] Zhang J and Lan C Q 2008 Mater. Lett. 62 1521
[35] You H, Ji Y, Wang L, Yang S, Yang Z, Fang J, Song X and Ding B 2012 J. Mater. Chem. 22 1998
[36] Kudelski A 2005 Chem. Phys. Lett. 414 271
[1] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[2] Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating
Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2020, 29(8): 084208.
[3] 575-fs passively mode-locked Yb:CaF2 ceramic laser
Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧). Chin. Phys. B, 2020, 29(7): 074205.
[4] Compact NbN resonators with high kinetic inductance
Xing-Yu Wei(魏兴雨), Jia-Zheng Pan(潘佳政), Ya-Peng Lu(卢亚鹏), Jun-Liang Jiang(江俊良), Zi-Shuo Li(李子硕), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Qing-Yuan Zhao(赵清源), Xiao-Qing Jia(贾小氢), Lin Kang(康琳), Jian Chen(陈健), Chun-Hai Cao(曹春海), Hua-Bing Wang(王华兵), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2020, 29(12): 128401.
[5] All-fiberized very-large-mode-area Yb-doped fiber based high-peak-power narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Min Yang(杨敏), Ping-Xue Li(李平雪), Dong-Sheng Wang(王东生), Ke-Xin Yu(于可新), Xue-Yan Dong(董雪岩), Ting-Ting Wang(王婷婷), Chuan-Fei Yao(姚传飞), and Wei-Xin Yang(杨卫鑫). Chin. Phys. B, 2020, 29(11): 114206.
[6] Diode-pumped Kerr-lens mode-locked Ti: sapphire laser with broad wavelength tunability
Han Liu(刘寒), Geyang Wang(王阁阳), Ke Yang(杨科), Renzhu Kang(康仁铸), Wenlong Tian(田文龙), Dacheng Zhang(张大成), Jiangfeng Zhu(朱江峰), Hainian Han(韩海年), Zhiyi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094213.
[7] Tunable coupling between Xmon qubit and coplanar waveguide resonator
He-Kang Li(李贺康), Ke-Min Li(李科敏), Hang Dong(董航), Qiu-Jiang Guo(郭秋江), Wu-Xin Liu(刘武新), Zhan Wang(王战), Hao-Hua Wang(王浩华), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2019, 28(8): 080305.
[8] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[9] Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials
Wei Jia(贾微), Pei-Wen Ren(任佩雯), Yu-Chen Tian(田雨宸), Chun-Zhen Fan(范春珍). Chin. Phys. B, 2019, 28(2): 026102.
[10] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[11] Tunable magnetic orders in UAu1-xSb2
Wen Zhang(张文), Qiu-Yun Chen(陈秋云), Dong-Hua Xie(谢东华), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Wei Feng(冯卫), Xie-Gang Zhu(朱燮刚), Qun-Qing Hao(郝群庆), Yun Zhang(张云), Li-Zhu Luo(罗丽珠), Xin-Chun Lai(赖新春). Chin. Phys. B, 2019, 28(1): 017102.
[12] High-power linearly-polarized tunable Raman fiber laser
Jiaxin Song(宋家鑫), Hanshuo Wu(吴函烁), Jiangming Xu(许将明), Hanwei Zhang(张汉伟), Jun Ye(叶俊), Jian Wu(吴坚), Pu Zhou(周朴). Chin. Phys. B, 2018, 27(9): 094209.
[13] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[14] Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions
Yi Tian(田毅), Han-Fu Wang(王汉夫), Lan-Qin Yan(闫兰琴), Xian-Feng Zhang(张先锋), Attia Falak, Pei-Pei Chen(陈佩佩), Feng-Liang Dong(董凤良), Lian-Feng Sun(孙连峰), Wei-Guo Chu(禇卫国). Chin. Phys. B, 2018, 27(7): 077406.
[15] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
No Suggested Reading articles found!