Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 104209    DOI: 10.1088/1674-1056/26/10/104209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Heterogeneous growth of KDP/KT crystal

Chao Wang(王超), Wei Shi(施巍), Zhuang-Zhuang Zhang(张壮壮), Hui Cao(曹惠), Ren-Chao Che(车仁超)
Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China
Abstract  The growth of heterogeneous crystal has aroused a great deal of interest in recent years. In this study, KH2PO4 (KDP)/KTaO3 (KT) heterogeneous crystal is acquired based on the KT substrate. Here, we report the observation of the oriented layer-by-layer structure in KDP/KT composite crystal by scanning electron microscopy (SEM). The structure of KDP/KT composite crystal is accurately identified by transmission electron microscopy (TEM) for the first time and we find that the KT crystals dope into KDP crystal in the growth process with the mode of doping. It can be obtained from the analysis of crystal structure that the structure difference leads to the doping growth mode. Our research demonstrates a facile method to fabricate a composite nonlinear optical crystal based on KDP/KT heterostructure, and might shed light on potential applications of the composite nonlinear optical crystal.
Keywords:  KDP      KT      heterostructure      nonlinear optical materials  
Received:  17 March 2017      Revised:  11 May 2017      Accepted manuscript online: 
PACS:  42.70.Hj (Laser materials)  
  42.70.Mp (Nonlinear optical crystals)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China-Chinese Academy of Engineering Physics Academic Fund (NSFC-NSAF) (Grant No. U1330118), the National Natural Science Foundation of China (Grant No. 51402053), and the Shanghai Education Development Foundation, China (Grant No. 09SG01).
Corresponding Authors:  Hui Cao, Ren-Chao Che     E-mail:  caohui@fudan.edu.cn;rcche@fudan.edu.cn

Cite this article: 

Chao Wang(王超), Wei Shi(施巍), Zhuang-Zhuang Zhang(张壮壮), Hui Cao(曹惠), Ren-Chao Che(车仁超) Heterogeneous growth of KDP/KT crystal 2017 Chin. Phys. B 26 104209

[1] De Yoreo J J, Burnham A K and Whitman P K 2002 Int. Mater. Rev. 47 113
[2] Rhodes M A, Woods B, DeYoreo J J, Roberts D and Atherton L J 1995 Appl. Opt. 34 5312
[3] Huang X X, Jia H T, Zhou W, Zhang F, Guo H W and Deng X W 2015 Appl. Opt. 54 9786
[4] Zaitseva N P, De Yoreo J J, Dehaven M R, Vital R L, Montgomery K E, Richardson M and Atherton L J 1997 J. Cryst. Growth 180 255
[5] de Vries S A, Goedtkindt P, Bennett S L, Huisman W J, Zwanenburg M J, Smilgies D M, De Yoreo J J, van Enckevort W J P, Bennema P and Vlieg E 1998 Phys. Rev. Lett. 80 2229
[6] Liiri M, Enqvist Y, Kallas J and Aittamaa J 2006 J. Cryst. Gowth 286 413
[7] Liiri M, Hatakka H, Kallas J, Aittamaa J and Alopaeus V 2010 Chem. Eng. Res. Des. 88 1297
[8] Woodall J M, Pettit G D, Jackson T N and Lanza C 1983 Phys. Rev. Lett. 51 1783
[9] Sharma R, Paul B and Banerji P 2010 Appl. Surf. Sci. 256 2232
[10] Li Y F, Yao B, Deng R, Li B H, Zhang Z Z, Shan C X, Zhao D X and Shen D Z 2013 J. Alloys Compd. 575 233
[11] W J X, Wang L S, Zhang Q, Meng X Y, Yang S Y, Zhao G J, Li H J, Wei H Y and Wang Z G 2015 Chin. Phys. B 24 026802
[12] Liu M G, Yang Y B, Xiang P, Chen W J, Han X B, Lin X Q, Lin J L, Luo H, Liao Q, Zang W J, Wu Z S, Liu Y and Zhang B J 2015 Chin. Phys. B 24 068503
[13] Nishikawa A, Kumakura K, Akasaka T and Makimoto T 2005 Appl. Phys. Lett. 87 233505
[14] Cao H, Wang C, Liu H J, Wu W D, Shi W, Zhang Z Z and Che R C 2016 Opt. Lett. 41 3411
[1] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[2] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[6] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[7] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[10] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[11] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[12] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[15] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
No Suggested Reading articles found!