Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 104208    DOI: 10.1088/1674-1056/26/10/104208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Structural evolution study of additions of Sb2S3 and CdS into GeS2 chalcogenide glass by Raman spectroscopy

Hai-Tao Guo(郭海涛)1,2, Ming-Jie Zhang(张鸣杰)1,3, Yan-Tao Xu(许彦涛)2, Xu-Sheng Xiao(肖旭升)2, Zhi-Yong Yang(杨志勇)1
1. Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China;
2. State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences(CAS), Xi'an 710119, China;
3. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
Abstract  

The structures of pseudo-binary GeS2-Sb2S3, GeS2-CdS, Sb2S3-CdS, and pseudo-ternary GeS2-Sb2S3-CdS chalcogenide systems are systematically investigated by Raman spectroscopy. It is shown that a small number of[S3Ge-GeS3] structural units (SUs) and -S-S-/S8 groups exist simultaneously in GeS2 glass which has a three-dimensional continuous network backbone consisting of cross-linked corner-sharing and edge-sharing[GeS4] tetrahedra. When Sb2S3 is added into GeS2 glass, the network backbone becomes interconnected[GeS4] tetrahedra and[SbS3] pyramids. Moreover, Ge atoms in[S3Ge-GeS3] SUs tend to capture S atoms from Sb2S3, leading to the formation of[S2Sb-SbS2] SUs. When CdS is added into GeS2 glass,[Cd4GeS6] polyhedra are formed, resulting in a strong crystallization tendency. In addition, Ge atoms in[S3Ge-GeS3] SUs tend to capture S atoms from CdS, resulting in the dissolution of Ge-Ge bond. Co-melting of Sb2S3 or CdS with GeS2 reduces the viscosity of the melt and improves the homogeneity of the glass. The GeS2 glass can only dissolve up to 10-mol% CdS without crystallization. In comparison, GeS2-Sb2S3 glasses can dissolve up to 20-mol% CdS, implying that Sb2S3 could delay the construction of[Cd4GeS6] polyhedron and increase the dissolving amount of CdS in the glass.

Keywords:  chalcogenide glass      Raman spectroscopy      structure      Ge-Sb-Cd-S system  
Received:  29 April 2017      Revised:  01 June 2017      Accepted manuscript online: 
PACS:  42.70.Ce (Glasses, quartz)  
  42.70.Km (Infrared transmitting materials)  
  36.20.Ng (Vibrational and rotational structure, infrared and Raman spectra)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61475189, 61405240, and 61575086), the Natural Science Basic Research Project in Shaanxi Province, China (Grant No. 2015JQ5141), and the Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, China (Grant No. KLALMD-2015-08).

Corresponding Authors:  Hai-Tao Guo, Zhi-Yong Yang     E-mail:  guoht_001@opt.ac.cn;yangzhiyong@jsnu.edu.cn

Cite this article: 

Hai-Tao Guo(郭海涛), Ming-Jie Zhang(张鸣杰), Yan-Tao Xu(许彦涛), Xu-Sheng Xiao(肖旭升), Zhi-Yong Yang(杨志勇) Structural evolution study of additions of Sb2S3 and CdS into GeS2 chalcogenide glass by Raman spectroscopy 2017 Chin. Phys. B 26 104208

[1] Zhang X H, Guimond Y and Bellec Y 2003 J. Non-Cryst. Solids 326-327 519
[2] Cha d H, Kim H J, Hwang Y, Jeong J C and Kim J H 2012 Appl. Opt. 51 5649
[3] Yang Z Y, Gulbiten O, Lucas P, Luo T and Jiang S B 2011 J. Am. Ceram. Soc. 94 1761
[4] Sanghera J and Gibson D 2014 Chalcogenide glasses:Preparation, properties and applications (Oxford:Woodhead Publishing), pp. 113-138
[5] Eggleton B J, Luther-Davies B and Richardson K 2011 Nat. Photon. 5 141
[6] Lucas P, Coleman G, Jiang S B, Luo T and Yang Z Y 2015 Opt. Mater. 47 530
[7] Ma P, Choi D Y, Yu Y, Yang Z Y, Vu K, Thach N, Mitchell A, Luther-Davies B and Madden S 2015 Opt. Express 23 19969
[8] Zhan H, Yan X T, Guo H T, Xu Y T, He J L, Li F, Yang J F, Si J H, Zhou Z G and Lin A X 2015 Opt. Mater. 42 491
[9] Zhang B, Zhai C C, Qi S S, Guo W, Yang Z Y, Yang A P, Gai X, Yu Y, Wang R P, Tang D Y, Tao G M and Luther-Davies B 2015 Opt. Lett. 40 4384
[10] Guo H T, Liu L, Wang Y Q, Hou C Q, Li W N, Lu M, Zou K S and Peng B 2009 Opt. Express 17 15350
[11] Seddon A B, Tang Z Q, Furniss D, Sujecki S and Benson T M 2010 Opt. Express 18 26704
[12] Yang A P, Qiu J H, Zhang M J, Ren H, Zhai C C, Qi S S, Zhang B, Tang D Y and Yang Z Y 2017 J. Alloys Compd. 695 1237
[13] Eggleton B J, Vo T D, Pant R, Schr J, Pelusi M D, Choi D Y, Madden S J, Luther-Davies B 2012 Laser Photon. Rev. 6 97
[14] Petersen C R, Müller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A and Bang O 2014 Nat. Photon. 8 830
[15] Zhang B, Guo W, Yu Y, Zhai C C, Qi S S, Yang A P, Li L, Yang Z Y, Wang R P, Tang D Y, Tao G M and Luther-Davies B 2015 J. Am. Ceram. Soc. 98 1389
[16] Ou H Y, Dai S X, Zhang P Q, Liu Z J, Wang X S, Chen F F, Xu H, Luo B H, Huang Y C and Wang R P 2016 Opt. Lett. 41 3201
[17] Bernier M, El-Amraoui M, Couillard J F, Messaddeq Y and Vallée R 2012 Opt. Lett. 37 3900
[18] Guo H T, Tao H Z, Gong Y Q and Zhao X J 2008 J. Non-Cryst. Solids 354 1159
[19] Guo H T, Tao H Z, Gu S X, Zheng X L, Zhai Y B, Chu S S, Zhao X J, Wang S and Gong Q H 2007 J. Solid State Chem. 180 240
[20] Yang Z Y, Tang G, Luo L and Chen W 2007 J. Am. Ceram. Soc. 90 667
[21] Guo H T, Hou C Q, Gao F, Lin A X, Wang P F, Zhou Z G, Lu M, Wei W and Peng B 2010 Opt. Express 18 23275
[22] Guo H T, Zheng X L, Lu M, Zou K S, Peng B, Gu S X, Liu H and Zhao X J 2009 Opt. Mater. 31 865
[23] Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X and Nie Q H 2016 Acta Phys. Sin. 65 154207(in Chinese)
[24] Yang Y, Chen Y X, Liu Y H, Rui Y, Cao F Y, Yang A P, Zu C K and Yang Z Y 2016 Acta Phys. Sin. 65 127801(in Chinese)
[25] Brooker M H, Nielsen O F and Praestgaard E 1988 J, Raman Spectrosc. 19 71
[26] Andrikopoulos K S, Yannopoulos S N, Voyiatzis G A, Kolobov A V, Ribes M and Tominaga J 2006 J. Phys:Condens. Matter 18 965
[27] Musgraves J D, Wachtel P, Gleason B and Richardson K 2014 J. Non-Cryst. Solids 386 61
[28] Petit L, Carlie N, Adamietz F, Couzi M, V. Rodriguez and Richardson K C 2006 Mater. Chem. Phys. 97 64
[29] Petit L, Carlie N, Villeneuve R, Massera J, Couzi M, Humeau A, Boudebs G and Richardson K 2006 J. Non-Cryst. Solids 352 5413
[30] Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M and Frumar M 1998 J. Non-Cryst. Solids 226 85
[31] Zhang M J, Yang Z Y, Li L, Wang Y W, Qiu J H, Yang A P, Tao H Z and Tang D Y 2016 J. Non-Cryst. Solids 452 114
[32] Nazabal V, Charpentier F, Adam J L, Nemec P, Lhermite H, Brandily-Anne M L, Charrier J, Guin J P and Moréac A 2011 Int. J. Appl. Ceram. Tecnol. 8 990
[33] Guo H T, Zhai Y B, Tao H Z, Dong G P and Zhao X J 2007 Mater. Sci. Eng. B-Adv. 138 235
[34] Yang A P, Zhang M J, Li L, Wang Y W, Zhang B, Yang Z Y and Tang D Y 2016 J. Am. Ceram. Soc. 99 12
[35] Frumarová B, Nemec P, Frumar M and Oswald J 1998 Semiconductors 32 812
[36] Heo J, Yoon J M and Ryou S Y 1998 J. Non-Cryst. Solids 238 115
[37] Tao H Z, Mao S, Dong G P, Xiao H Y and Zhao X 2006 Solid State Commun. 137 408
[38] Guo H T, Tao H Z, Zhai Y B, Mao S and Zhao X J 2007 Spectrochim. Acta A 67 1351
[39] Hu J J, Tarasov V, Carlie N, Petit L, Agarwal A, Richardson K and Kimerling L 2008 Opt. Mater. 30 1560
[40] Lin C G, Li Z B, Ying L, Xu Y S, Zhang P Q, Dai S X, Xu T F and Nie Q H 2012 J. Phys. Chem. C 116 5862
[41] Kincl M and Tichy L 2007 Mater. Chem. Phys. 103 78
[42] Feltz A, Pohle M, Steil H and Herms G 1985 J. Non-Cryst. Solids 69 271
[43] Bayliss P and Nowacki W 1972 Z. Kristallogr 135 308
[44] Julien C, Barnier S, Massot M, Chbani N, Cai X, Loireau-Lozac'h A M and Guittard M 1994 Mater. Sci. Eng. B-Adv. 22 191
[45] Tverjanovich A, Tveryanovich Yu S and Loheider S 1996 J. Non-Cryst. Solids 208 49
[46] Feltz A 1993 Amorphous inorganic materials and glasses, VCH, 100
[47] Sen S and Aitken B G 2002 Phys. Rev. B 66 134204
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[4] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[5] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[6] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[7] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[8] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[9] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[10] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[11] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[12] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[13] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[14] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[15] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
No Suggested Reading articles found!