Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078103    DOI: 10.1088/1674-1056/25/7/078103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Depositing aluminum as sacrificial metal to reduce metal-graphene contact resistance

Da-cheng Mao(毛达诚), Zhi Jin(金智), Shao-qing Wang(王少青), Da-yong Zhang(张大勇), Jing-yuan Shi(史敬元), Song-ang Peng(彭松昂), Xuan-yun Wang(王选芸)
Department of Microwave Devices and Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  Reducing the contact resistance without degrading the mobility property is crucial to achieve high-performance graphene field effect transistors. Also, the idea of modifying the graphene surface by etching away the deposited metal provides a new angle to achieve this goal. We exploit this idea by providing a new process method which reduces the contact resistance from 597 Ω·μm to sub 200 Ω·μm while no degradation of mobility is observed in the devices. This simple process method avoids the drawbacks of uncontrollability, ineffectiveness, and trade-off with mobility which often exist in the previously proposed methods.
Keywords:  graphene      field effect transistor      contact resistance  
Received:  11 December 2015      Revised:  15 March 2016      Published:  05 July 2016
PACS:  81.05.ue (Graphene)  
  73.22.Pr (Electronic structure of graphene)  
  73.40.-c (Electronic transport in interface structures)  
  72.80.Vp (Electronic transport in graphene)  
Fund: Project by the National Science and Technology Major Project, China (Grant No. 2011ZX02707.3), the National Natural Science Foundation of China (Grant No. 61136005), the Chinese Academy of Sciences (Grant No. KGZD-EW-303), and the Project of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515003).
Corresponding Authors:  Zhi Jin     E-mail:  jinzhi@ime.ac.cn

Cite this article: 

Da-cheng Mao(毛达诚), Zhi Jin(金智), Shao-qing Wang(王少青), Da-yong Zhang(张大勇), Jing-yuan Shi(史敬元), Song-ang Peng(彭松昂), Xuan-yun Wang(王选芸) Depositing aluminum as sacrificial metal to reduce metal-graphene contact resistance 2016 Chin. Phys. B 25 078103

[1] Zhou X, Chen J, Gu L and Miao L 2015 Chin. Phys. Lett. 32 026102
[2] Fan T J, Yuan C Q, Tang W, Tong S Z, Liu Y D, Huang W, Min Y G and Epstein A J 2015 Chin. Phys. Lett. 32 076802
[3] Liu Q B, Yu C, Li J, Song X B, He Z Z, Lu W L, Gu G D, Wang Y G and Feng Z H 2014 Chin. Phys. Lett. 31 078104
[4] Zhao W, He D W, Wang Y S, Du X and Xin H 2015 Chin. Phys. B 24 047204
[5] Shao Y, Wang J, Wu H, Liu J, Aksay I A and Lin Y 2010 Electroanalysis 22 1027
[6] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[7] Hsu A, Wang H, Kim K K, Kong J and Palacios T 2011 IEEE Electron Device Lett. 32 1008
[8] Xia F, Perebeinos V, Lin Y M, Wu Y and Avouris P 2011 Nat. Nanotechnol. 6 179
[9] Liu W, Wei J, Sun X and Yu H 2013 Crystals 3 257
[10] Schwierz F 2010 Nat. Nanotechnol. 5 487
[11] Rizzi L G, Bianchi M, Behnam A, Carrion E, Guerriero E, Polloni L, Pop E and Sordan R 2012 Nano Lett. 12 3948
[12] Choi M S, Lee S H and Yoo W J 2011 J. Appl. Phys. 110 073305
[13] Li W, Liang Y, Yu D, Peng L, Pernstich K P, Shen T, Hight Walker A R, Cheng G, Hacker C A, Richter C A, Li Q, Gundlach D J and Liang X 2013 Appl. Phys. Lett. 102 183110
[14] Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K and Chiu P W 2012 Nano Lett. 12 414
[15] Cheng Z, Zhou Q, Wang C, Li Q, Wang C and Fang Y 2011 Nano Lett. 11 767
[16] Leong W S, Nai C T and Thong J T 2014 Nano Lett. 14 3840
[17] Moser J, Barreiro A and Bachtold A 2007 Appl. Phys. Lett. 91 163513
[18] Choi W J, Chung Y J, Park S, Yang C S, Lee Y K, An K S, Lee Y S and Lee J O 2014 Adv. Mater. 26 637
[19] Goossens A M, Calado V E, Barreiro A, Watanabe K, Taniguchi T and Vandersypen L M K 2012 Appl. Phys. Lett. 100 073110
[20] Lee J, Kim Y, Shin H J, Lee C, Lee D, Moon C Y, Lim J and Chan Jun S 2013 Appl. Phys. Lett. 103 103104
[21] Gong C, McDonnell S, Qin X, Azcatl A, Dong H, Chabal Y J, Cho K and Wallace R M 2014 ACS Nano 8 642
[22] Leong W S, Gong H and Thong J T 2014 ACS Nano 8 994
[23] Yang R, Wu S, Wang D, Xie G, Cheng M, Wang G, Yang W, Chen P, Shi D and Zhang G 2014 Nano Res. 7 1449
[24] Song S M, Park J K, Sul O J and Cho B J 2012 Nano Lett. 12 3887
[25] Joiner C A, Roy T, Hesabi Z R, Chakrabarti B and Vogel E M 2014 Appl. Phys. Lett. 104 223109
[26] Dimiev A, Kosynkin D V, Sinitskii A, Slesarev A, Sun Z and Tour J M 2011 Science 331 1168
[27] Nath A, Koehler A D, Jernigan G G, Wheeler V D, Hite J K, Herández S C, Robinson Z R, Garces N Y, Myers-Ward R L, Eddy C R, Gaskill D K and Rao M V 2014 Appl. Phys. Lett. 104 224102
[28] Matsuda Y, Deng W Q and Goddard W A 2010 J. Phys. Chem. C 114 17845
[29] Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235
[30] Grosse K L, Bae M H, Lian F, Pop E and King W P 2011 Nat. Nanotechnol. 6 287
[31] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Appl. Phys. Lett. 94 062107
[32] Zhang Z, Xu H, Zhong H and Peng L M 2012 Appl. Phys. Lett. 101 213103
[33] Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Das Sarma S, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 246803
[34] Hwang E H, Adam S and Sarma S D 2007 Phys. Rev. Lett. 98 186806
[1] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏), and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[2] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[3] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[4] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[5] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[6] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[7] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[8] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[9] Recent advances, perspectives, and challenges inferroelectric synapses
Bo-Bo Tian(田博博), Ni Zhong(钟妮), Chun-Gang Duan(段纯刚). Chin. Phys. B, 2020, 29(9): 097701.
[10] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[11] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[12] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[13] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[14] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[15] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
No Suggested Reading articles found!