Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077801    DOI: 10.1088/1674-1056/25/7/077801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermally induced native defect transform in annealed GaSb

Jie Su(苏杰)1,2, Tong Liu(刘彤)1, Jing-Ming Liu(刘京明)1, Jun Yang(杨俊)1, Yong-Biao Bai(白永彪)1,2, Gui-Ying Shen(沈桂英)1,2, Zhi-Yuan Dong(董志远)1, Fang-Fang Wang(王芳芳)3, You-Wen Zhao(赵有文)1
1 Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Infrared Imaging Materials and Detectors Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  Undoped p-type GaSb single crystals were annealed at 550-600 ℃ for 100 h in ambient antimony. The annealed GaSb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy (GDMS), infrared (IR) optical transmission and photoluminescence (PL) spectroscopy. Compared with the as-grown GaSb single crystal, the annealed GaSb samples have lower hole concentrations and weak native acceptor related PL peaks, indicating the reduction of the concentration of gallium antisite related native acceptor defects. Consequently, the below gap infrared transmission of the GaSb samples is enhanced after the thermal treatment. The mechanism about the reduction of the native defect concentration and its influence on the material property were discussed.
Keywords:  GaSb      annealing      defect      Hall effect measurement  
Received:  16 December 2015      Revised:  14 March 2016      Published:  05 July 2016
PACS:  78.55.Cr (III-V semiconductors)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  91.60.Ed (Crystal structure and defects, microstructure)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61474104 and 61504131).
Corresponding Authors:  You-Wen Zhao     E-mail:  zhaoyw@semi.ac.cn

Cite this article: 

Jie Su(苏杰), Tong Liu(刘彤), Jing-Ming Liu(刘京明), Jun Yang(杨俊), Yong-Biao Bai(白永彪), Gui-Ying Shen(沈桂英), Zhi-Yuan Dong(董志远), Fang-Fang Wang(王芳芳), You-Wen Zhao(赵有文) Thermally induced native defect transform in annealed GaSb 2016 Chin. Phys. B 25 077801

[1] Milne A G and Polyako A Y 1993 Solid-State Electron. 36 803
[2] Dutta P S, Bhat H L and Kumar V 1997 J. Appl. Phys. 81 5821
[3] Passlack M, Schubert E F, Hobson W S, Hong M, Moriya N, Chu S N G, Konstadinidis K, Mannaerts J P, Schnoes M L and Zydzik G J 1995 J. Appl. Phys. 77 686
[4] Rehm R, Lemke F, Masur M, Schmitz J, Stadelmann T, Wauro M, Wörl A and Walther M 2015 Infrared Phys. Technol. 70 87
[5] Pusz W, Kowalewski A, Martyniuk P, Gawron W, Plis E, Krishna S and Rogalski A 2014 Opt. Eng. 53 043107
[6] Lv Y Q, Zhang L X, Si J J, Peng Z Y, Zhang L, Cao X C, Zhang X F, Ding J X, Zhu X B, Yao G S, Zhang X L and Niu Z C 2014 Opt. Quant. Electron. 47 1731
[7] Sifferman S D, Nair H P, Salas R, Sheehan N T, Maddox S J, Crook A M and Bank S R 2015 IEEE J. Sel. Top. Quantum 21 1502410
[8] George M and Kagawa T 1980 Jpn. J. Appl. Phys. 19 2303
[9] Morosini M B Z, Herrera-Perez J L, Loural M S S, Von Zuben A A G, da Silveira A C F and Patel N B 1993 IEEE J. Quantum Electron. 29 2103
[10] Wang Y B, Xu Y, Song G F and Chen L H 2012 Chin. Phys. B 21 084208
[11] Sulima O V and Bett A W 2001 Sol. Energy Mater. Sol. Cells 66 533
[12] Tang L, Ye H and Xu J 2014 Sol. Energy Mater. Sol. Cells 122 94
[13] Juang B C, Laghumavarapu R B, Foggo B J, Simmonds P J, Lin A, Liang B and Huffaker D L 2015 Appl. Phys. Lett. 106 111101
[14] Xie H, Piao J, Katz J and Wang W I 1991 J. Appl. Phys. 70 3152
[15] Wang Y B, Xu Y, Zhang Y, Yu X, Song G F and Chen L H 2011 Chin. Phys. B 20 067302
[16] Baxter R D, Bate R T and Reid F J 1965 J. Phys. Chem. Solids 26 41
[17] Jakowetz W, Ruhle W, Breuninger K and Pilkuhn M 1972 Phys. Stat. Sol. A 12 169
[18] Baranov A N, Dyshlovenko P E, Kopylov A A and Sherstnyev V V 1988 Sov. Tech. Phys. Lett. 14 29
[19] Chandola A, Pino R and Dutta P S 2005 Semicond. Sci. Technol. 20 886
[20] Ghezzi C, Magnanini R, Parisini A, Rotelli B, Tarricone L, Bosacchi A and Franchi S 1997 Semicond. Sci. Technol. 12 858
[21] Wu M C and Chen C C 1992 J. Appl. Phys. 72 4275
[22] Anayama C, Tanahashi T, Kuwatsuka H, Nishiyama S, Isozumi S and Nakajima K 1990 Appl. Phys. Lett. 56 239
[23] Takeda Y, Noda S and Sasaki A 1984 Appl. Phys. Lett. 45 656
[24] Campos M D O 1973 J. Appl. Phys. 44 2642
[25] Dutta P S, Koteswara Rao K S R, Bhat H L and Kumar V 1995 Appl. Phys. A 61 149
[26] Swaminathan V and Macrander A T 1991 Materials Aspects of GaAs and InP Based Structures (Englewood Cliffs: Prentice Hall) Chap. 5
[27] Dutta P S, Méndez B, Piqueras J, Dieguez E and Bhat H L 1996 J. Appl. Phys. 80 1112
[28] Woelk C and Benz K W 1974 J. Cryst. Growth 27 177
[29] Méndez B, Dutta P S, Piqueras J and Dieguez E 1995 Appl. Phys. Lett. 67 2648
[30] Tuck B 1988 Atomic Diffusion in III-VSemiconductors (Bristol: Adam Hilger) pp.9-11
[31] Landolt B 2003 Group III Condensed Matter 41A2b
[32] Bracht H, Nicols S P, Walukiewicz W, Silveira J P, Briones F and Haller E E 2000 Nature 408 69
[33] Bracht H, Nicols S P, Haller E E, Silveira J P and Briones F 2001 J. Appl. Phys. 89 5393
[34] Wbiler D and Mehrer H 2006 Philos. Mag. A 49 309
[35] Chroneos A and Bracht H 2008 J. Appl. Phys. 104 093714
[36] Hakala M, Puska M J and Nieminen R M 2002 J. Appl. Phys. 91 4988
[1] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[2] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[3] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[4] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[5] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[6] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[7] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
[8] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
[9] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[10] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
[11] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[12] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[13] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[14] A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface
Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟). Chin. Phys. B, 2020, 29(12): 128801.
[15] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
No Suggested Reading articles found!