Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076103    DOI: 10.1088/1674-1056/25/7/076103
Special Issue: TOPICAL REVIEW — High pressure physics
TOPICAL REVIEW—High pressure physics Prev   Next  

Theoretical design of diamondlike superhard structures at high pressure

Quan Li(李全), Wei-Tao Zheng(郑伟涛)
Department of Materials Science, Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

Diamond, as the hardest known material, has been widely used in industrial applications as abrasives, coatings, and cutting and polishing tools, but it is restricted by several shortcomings, e.g., its low thermal and chemical stability. Considerable efforts have been devoted to designing or synthesizing the diamond-like B-C-N-O compounds, which exhibit excellent mechanical property. In this paper, we review the recent theoretical design of diamond-like superhard structures at high pressure. In particular, the recently designed high symmetric phase of low-energy cubic BC3 meets the experimental observation, and clarifies the actual existence of cubic symmetric phase for the compounds formed by B-C-N-O system, besides the classical example of cubic boron nitride.

Keywords:  crystal structures      high pressure      superhard materials  
Received:  20 August 2015      Revised:  04 September 2015      Published:  05 July 2016
PACS:  61.50.-f (Structure of bulk crystals)  
  62.20.-x (Mechanical properties of solids)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 51202084, 11474125, and 51372095).

Corresponding Authors:  Quan Li     E-mail:

Cite this article: 

Quan Li(李全), Wei-Tao Zheng(郑伟涛) Theoretical design of diamondlike superhard structures at high pressure 2016 Chin. Phys. B 25 076103

[1] Brazhkin V, Dubrovinskaia N, Nicol M, Novikov N, Riedel R, Solozhenko V and Zhao Y 2004 Nat. Mater. 3 576
[2] Tian Y, Xu B and Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93
[3] Kurakevych O O 2009 J. Superhard Mater. 31 139
[4] Xu B and Tian Y 2015 Sci. China Math. 58 132
[5] Wentorf Jr R H 1957 J. Chem. Phys. 26 956
[6] Zhao Y, He D W, Daemen L L, Shen T D, Schwarz R B, Zhu Y, Bish D L, Huang J, Zhang J, Shen G, Qian J and Zerda T W 2002 J. Mater. Res. 17 3139
[7] Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
[8] Knittle E, Kaner R B, Jeanloz R and Cohen M L 1995 Phys. Rev. B 51 12149
[9] Solozhenko V L, Andrault D, Fiquet G, Mezouar M and Rubie D C 2001 Appl. Phys. Lett. 78 1385
[10] Komatsu T, Nomura M, Kakudate Y and Fujiwara S 1996 J. Mater. Chem. 6 1799
[11] Nakano S, Akaishi M, Sasaki T and Yamaoka S 1994 Chem. Mater. 6 2246
[12] He J L, Tian Y J, Yu D L, Wang T S, Liu S M, Guo L C, Li D C, Jia X P, Chen L X and Zou G T 2001 Chem. Phys. Lett. 340 431
[13] Solozhenko V L, Kurakevych O O, Andrault D, Le Godec Y and Mezouar M 2009 Phys. Rev. Lett. 102 015506
[14] Hubert H, Garvie L A J, Devouard B, Buseck P R, Petuskey W T and McMillan P F 1998 Chem. Mater 10 1530
[15] Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O and Solozhenko V L 2009 Nature 457 863
[16] Solozhenko V L, Kurakevych O O and Oganov A R 2008 J. Superhard Mater. 30 428
[17] Godec Y L, Kurakevych O O, Munsch P, Garbarino G and Solozhenko V L 2009 Solid State Commun. 149 1356
[18] Bullett D W 1982 J. Phys. C: Solid State Phys. 15 415
[19] Kurakevych O O and Solozhenko V L 2007 Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 63 i80
[20] Li Q, Wang H and Ma Y M 2010 J. Superhard Mater. 32 192
[21] Zinin P V, Ming L C, Ishii H A, Jia R, Acosta T and Hellebrand E 2012 J. Appl. Phys. 111 114905
[22] Li Q, Liu H, Zhou D, Zheng W T, Wu Z and Ma Y 2012 Phys. Chem. Chem. Phys. 14 13081
[23] Zhang M, Liu H, Du Y, Zhang X, Wang Y and Li Q 2013 PCCP 15 14120
[24] Li Q, Ma Y M, Oganov A R, Wang H B, Wang H, Xu Y, Cui T, Mao H K and Zou G T 2009 Phys. Rev. Lett. 102 175506
[25] Xia Y, Li Q and Ma Y 2010 Comput. Mater. Sci. 49 S76
[26] Crowhurst J C, Goncharov A F, Sadigh B, Evans C L, Morrall P G, Ferreira J L and Nelson A J 2006 Science 311 1275
[27] Gregoryanz E, Sanloup C, Somayazulu M, Badro J, Fiquet G, Mao H and Hemley R J 2004 Nat. Mater. 3 294
[28] Crowhurst J C, Goncharov A, Sadigh B, Zaug J, Aberg D, Meng Y and Prakapenka V B 2008 J. Mater. Res. 23 1
[29] Young A F, Sanloup C, Gregoryanz E, Scandolo S, Hemley R J and Mao H 2006 Phys. Rev. Lett. 96 155501
[30] Jiang C, Lin Z and Zhao Y 2009 Phys. Rev. Lett. 103 185501
[31] Ono S, Kikegawa T and Ohishi Y 2005 Solid State Commun. 133 55
[32] Tolbert S H, Cumberland R W, Clark S M, Gilman J J, Weinberger M B and Kaner R B 2005 J. Am. Chem. Soc. 127 7264
[33] Gu Q, Krauss F and Steurer W 2008 Adv. Mater. 20 3620
[34] Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science 316 436
[35] Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L and Bi Y 2008 Adv. Mater. 20 4780
[36] Dubrovinskaia N, Dubrovinsky L and Solozhenko V L 2007 Science 318 1550c
[37] Chung H Y, Yanga J M, Tolbert S H and Kanerb R B 2008 J. Mater. Res. 23 1797
[38] Wang M, Li Y, Cui T, Ma Y and Zou G 2008 Appl. Phys. Lett. 93 101905
[39] Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R and Albert B 2014 Angew. Chem. Int. Ed. 53 1684
[40] Zhang X, Qin J, Xue Y, Zhang S, Jing Q, Ma M and Liu R 2013 Phys. Status Solidi-R 7 1022
[41] Gou H, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M and Abakumov A M 2013 Phys. Rev. Lett. 111 157002
[42] Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B and Tolbert S H 2012 Phys. Rev. B 85 064118
[43] Niu H, Wang J, Chen X Q, Li D, Li Y, Lazar P, Podloucky R and Kolmogorov A N 2012 Phys. Rev. B 85 144116
[44] Wu H, Sun H and Chen C 2014 Appl. Phys. Lett. 105 211901
[45] Chen X Q, Fu C L, Krčmar M and Painter G S 2008 Phys. Rev. Lett. 100 196403
[46] Li Q, Zhou D, Zheng W, Ma Y and Chen C 2013 Phys. Rev. Lett. 110 136403
[47] Wang H, Li Q, Li Y E, Xu Y, Cui T, Oganov A R and Ma Y M 2009 Phys. Rev. B 79 132109
[48] Wang H, Li Q, Wang H, Liu H, Cui T and Ma Y 2010 The Journal of Physical Chemistry C 114 8609
[49] Endo T, Sato T and Shimada M 1987 J. Mater. Sci. Lett. 6 683
[50] Grumbach M P, Sankey O F and McMillan P F 1995 Phys. Rev. B 52 15807
[51] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[52] Glass C W, Oganov A R and Hansen N 2006 Comput. Phys. Commun. 175 713
[53] Oganov A R, Glass C W and Ono S 2006 Earth Planet. Sci. Lett. 241 95
[54] Li Q, Chen W, Xia Y, Liu Y, Wang H, Wang H and Ma Y 2011 Diamond Relat. Mater. 20 501
[55] Li Y, Li Q and Ma Y 2011 EPL 95 66006
[56] Li Q, Wang M, Oganov A R, Cui T, Ma Y and Zou G 2009 J. Appl. Phys. 105 053514
[57] Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q and Ma Y 2013 J. Chem. Phys. 138 114101
[58] Garvie L A J, Hubert H, Petuskey W T, McMillan P F and Buseck P R 1997 J. Solid State Chem. 133 365
[59] Bolotina N B, Dyuzheva T I and Bendeliani N A 2001 Crystallography Rep. 46 734
[60] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[61] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[62] Lv J, Wang Y, Zhu L and Ma Y 2011 Phys. Rev. Lett. 106 015503
[63] He J L, Guo L C, Wu E, Luo X G and Tian Y J 2004 J. Phys.: Conden. Matter 16 8131
[64] Li Q, Zhou D, Wang H, Chen W, Wu B, Wu Z and Zheng W 2012 Solid State Commun. 152 71
[65] Sun H, Jhi S H, Roundy D, Cohen M L and Louie S G 2001 Phys. Rev. B 64 094108
[66] Pan Z, Sun H and Chen C 2005 J. Phys.: Condens. Matter 17 3211
[67] Zhang R Q, Chan K S, Cheung H F and Lee S T 1999 Appl. Phys. Lett. 75 2259
[68] Mattesini M and Matar S F 2001 Int. J. Inorg. Mater. 3 943
[69] Kim E, Pang T, Utsumi W, Solozhenko V L and Zhao Y 2007 Phys. Rev. B 75 184115
[70] Sun J, Zhou X F, Qian G R, Chen J, Fan Y X, Wang H T, Guo X J, He J L, Liu Z Y and Tian Y J 2006 Appl. Phys. Lett. 89 151911
[71] Luo X, Guo X, Xu B, Wu Q, Hu Q, Liu Z, He J, Yu D, Tian Y and Wang H T 2007 Phys. Rev. B 76 094103
[72] Zhou X F, Sun J, Fan Y X, Chen J, Wang H T, Guo X, He J and Tian Y 2007 Phys. Rev. B 76 100101
[73] Luo X, Guo X, Liu Z, He J, Yu D, Xu B, Tian Y and Wang H T 2007 Phys. Rev. B 76 092107
[74] Chen S Y, Gong X G and Wei S H 2007 Phys. Rev. Lett. 98 015502
[75] Chen S, Gong X G and Wei S H 2008 Phys. Rev. B 77 014113
[76] Chen C F and Sun H 2007 Phys. Rev. Lett. 99 159601
[77] Chen S, Gong X G and Wei S H 2007 Phys. Rev. Lett. 99 159602
[78] Luo X, Guo X, Xu B, Wu Q, Hu Q, Liu Z, He J, Yu D, Tian Y and Wang H T 2007 Phys. Rev. B 76 94103
[79] Luo X, Guo X, Liu Z, He J, Yu D, Xu B, Tian Y and Wang H T 2007 Phys. Rev. B 76 92107
[80] Li Q, Wang J, Zhang M, Li Q and Ma Y 2015 RSC Adv. 5 35882
[81] Dubitskiy G A, Blank V D, Buga S G, Semenova E E, Kulbachinskii V A, Krechetov A V and Kytin V G 2005 JETP Lett. 81 260
[82] Ekimov E A, Sidorov V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D and Stishov S M 2004 Nature 428 542
[83] Crespi V H 2003 Nat. Mater. 2 650
[84] Blase X, Bustarret E, Chapelier C, Klein T and Marcenat C 2009 Nat. Mater. 8 375
[85] Matar S F and Mattesini M 2001 Acad. Sci. Paris 4 255
[86] Liu H, Li Q, Zhu L and Ma Y 2010 Phys. Lett. A 375 771
[87] Mikhaylushkin A S, Zhang X and Zunger A 2013 Phys. Rev. B 87 094103
[88] Liu H, Li Q, Zhu L and Ma Y 2011 Solid State Commun. 151 716
[89] Gildenblat G S, Grot S A and Badzian A 1991 Proc. IEEE 79 647
[90] Jones L E and Thrower P A 1991 Carbon 29 251
[91] Ma Y, Tse J S, Cui T, Klug D D, Zhang L, Xie Y, Niu Y and Zou G 2005 Phys. Rev. B 72 014306
[92] Lee K W and Pickett W E 2004 Phys. Rev. Lett. 93 237003
[93] Takano Y, Takenouchi T, Ishii S, Ueda S, Okutsu T, Sakaguchi I, Umezawa H, Kawarada H and Tachiki M 2007 Diamond Relat. Mater. 16 911
[94] Calandra M and Mauri F 2008 Phys. Rev. Lett. 101 016401
[95] Liang Y, Zhang W, Zhao J and Chen L 2009 Phys. Rev. B 80 113401
[96] Lazar P and Podloucky R 2009 Appl. Phys. Lett. 94 251904
[97] Moussa J E and Cohen M L 2008 Phys. Rev. B 77 064518
[98] Li Q, Wang H, Tian Y, Xia Y, Cui T, He J, Ma Y and Zou G 2010 J. Appl. Phys. 108 023507
[99] Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S and Tian Y 2003 Phys. Rev. Lett. 91 015502
[100] He J, Wu E, Wang H, Liu R and Tian Y 2005 Phys. Rev. Lett. 94 015504
[101] Liu Z, He J, Yang J, Guo X, Sun H, Wang H T, Wu E and Tian Y 2006 Phys. Rev. B 73 172101
[102] Zhang M, Liu H, Li Q, Gao B, Wang Y, Li H, Chen C and Ma Y 2015 Phys. Rev. Lett. 114 015502
[103] Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
[104] Zhang Y, Sun H and Chen C F 2004 Phys. Rev. Lett. 93 195504
[105] Krenn C R, Roundy D, Cohen M L, Chrzan D C and Morris Jr J W 2002 Phys. Rev. B 65 134111
[106] Li J, van Vliet K J, Zhu T, Yip S and Suresh S 2002 Nature 418 307
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[3] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[4] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[5] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[6] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[9] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[10] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[11] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[12] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§. Chin. Phys. B, 2020, 29(10): 108102.
[13] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[14] A new technology for controlling in-situ oxygen fugacity in diamond anvil cells and measuring electrical conductivity of anhydrous olivine at high pressures and temperatures
Wen-Shu Shen(沈文舒), Lei Wu(吴雷), Tian-Ji Ou(欧天吉), Dong-Hui Yue(岳冬辉), Ting-Ting Ji(冀婷婷), Yong-Hao Han(韩永昊), Wen-Liang Xu(许文良), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2020, 29(1): 010702.
[15] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
No Suggested Reading articles found!