CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage |
E Lotfi1, H Rezania2, B Arghavaninia3, M Yarmohammadi4 |
1 Department of Physics, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran; 2 Department of Physics, Razi University, Kermanshah, Iran; 3 Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran; 4 Young researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran |
|
|
Abstract We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green's function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength.
|
Received: 25 January 2016
Revised: 15 March 2016
Accepted manuscript online:
|
PACS:
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
62.25.-g
|
(Mechanical properties of nanoscale systems)
|
|
61.46.Hk
|
(Nanocrystals)
|
|
71.10.-w
|
(Theories and models of many-electron systems)
|
|
Corresponding Authors:
E Lotfi
E-mail: lotfi.erf@gmail.com
|
Cite this article:
E Lotfi, H Rezania, B Arghavaninia, M Yarmohammadi Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage 2016 Chin. Phys. B 25 076102
|
[1] |
McCann E and Fal'ko V I 2006 Phys. Rev. Lett. 96 086805
|
[2] |
Novoselov K S 2006 Nat. Phys. 2 177
|
[3] |
Novoselov K S 2005 Nature 438 197
|
[4] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[5] |
Koshino M and Ando T 2006 Phys. Rev. B 73 245403
|
[6] |
Nilsson J, Castro Neto A H, Guinea F and Peres N M R 2008 Phys. Rev. B 78 045405
|
[7] |
Cserti J, Csord'as A and D'avid G 2007 Phys. Rev. Lett. 99 66802
|
[8] |
Min H, Sahu B, Banerjee S K and MacDonald A H 2007 Phys. Rev. B 75 155115
|
[9] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[10] |
Weitz R T, Allen M T, Feldman B E, Martin J and Yacoby A 2010 Science 330 812
|
[11] |
Lemonik Y, Aleiner I L, Toke C and Fal'ko V I 2010 Phys. Rev. B 82 201408
|
[12] |
Castro E V, Peres N M R, Stauber T and Silva N A P 2008 Phys. Rev. Lett. 100 186803
|
[13] |
Nandkishore R and Levitov L 2010 Phys. Rev. Lett. 104 156803
|
[14] |
Zhang F, Min H, Polini M and MacDonald A H 2010 Phys. Rev. B 81 041402
|
[15] |
Vafek O and Yang K 2010 Phys. Rev. B 81 041401
|
[16] |
Guinea F, Castro Neto A H and Peres N M R 2006 Phys. Rev. B 73 245426
|
[17] |
Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
|
[18] |
McCann E 2006 Phys. Rev. B 74 161403(R)
|
[19] |
Oostinga J B, Heersche H B, Liu X, Morpurgo A F and Vandersypen L M K 2007 Nat. Mater. 7 151
|
[20] |
Castro E V 2007 Phys. Rev. Lett. 99 216802
|
[21] |
Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
|
[22] |
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotech. 5 722
|
[23] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[24] |
Novoselov K S, McCann E, Morozov S V, Fal'ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
|
[25] |
Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N and Balandin A A 2010 Nat. Mater. 9 555
|
[26] |
Balandin A A 2011 Nat. Mater. 10 569
|
[27] |
Neek-Amal M and Peeters F M 2010 Phys. Rev. B 81 235421
|
[28] |
Zhang Y Y, Wang C M, Cheng Y and Xiang Y 2011 Carbon 49 4511
|
[29] |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
|
[30] |
Bunch J S, Verbridge S S, Alden J S, an der Zande A M, Parpia J M, Craighead H G and McEuen P L 2008 Nano Lett. 8 2458
|
[31] |
Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
|
[32] |
Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotech. 5 574
|
[33] |
Xia F, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
|
[34] |
Wang C R, Lu W S, Hao L, Lee W L, Lee T K, Lin F, Cheng I C and Chen J Z 2011 Phys. Rev. Lett. 107 186602
|
[35] |
Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P and Xia F 2012 Nat. Nanotech. 7 330
|
[36] |
Yan J, Kim M H, Elle J A, Sushkov A B, Jenkins G S, Milchberg H M, Fuhrer M S and Drew H D 2012 Nat. Nanotech. 7 472
|
[37] |
Sugawara K, Kanetani K, Sato T and Takahashi T 2011 AIP Adv. 1 022103
|
[38] |
Kanetani K, Sugawara K, Sato T, Shimizu R, Iwaya K, Hitosugi T and Takahashia T 2012 Proc. Natl. Acad. Sci. USA 109 19610
|
[39] |
Gong L, Young R J, Kinloch I A, Riaz I, Jalil R and Novoselov K S 2012 ACS Nano 6 2086
|
[40] |
Young R J, Kinloch I A, Gong L and Novoselov K S 2012 Compos. Sci. Technol. 72 1459
|
[41] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[42] |
Oostinga J B, Heersche H B, Liu X, Morpurgo A F and Vandersypen L M K 2007 Nat. Mat.
|
[43] |
Milton Pereira J J, Vasilopoulos P and Peeters F M 2007 Nano Lett. 7 946
|
[44] |
Nilsson J, Castro Neto A H, Guinea F, and Peres N M R 2007 Phys. Rev. B 76 165416
|
[45] |
Katsnelson M I 2007 Phys. Rev. B 76 073411
|
[46] |
Kechedzhi K, Falko V I, McCann E and Altshuler B L 2007 Phys. Rev. Lett. 98 176806
|
[47] |
Gorbachev R V, Tikhonekov F V, Mayorov A S, Horsell D W and Savchenko A K 2007 Phys. Rev. Lett. 98 176805
|
[48] |
Hao L and Lee T K 2010 Phys. Rev. B 81 165445
|
[49] |
Rezania H and Yarmohammadi M 2016 Superlattices and Microstructures 89 15
|
[50] |
Rezania H and Yarmohammadi M 2016 Physica E 75 125
|
[51] |
Zhou S Y, Gweon G H and Lanzara A 2006 Annals of Physics 321 1730
|
[52] |
Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
|
[53] |
Mallet P, Varchon F, Naud C, Magaud L, Berger C and Veuillen J Y 2007 Phys. Rev. B 76 041403
|
[54] |
Li G and Andrei E V 2007 Nat. Phys. 3 623
|
[55] |
Doniach S and Sondheimer E H 1988 Green's Function for Solid State Physicists (Singapour: World Scientific) p. 125
|
[56] |
Mahan G D 1993 Many Particle Physics (New York: Plenumn Press) p. 123
|
[57] |
Nilsson J, Castro A H, Guinea F and Peres N M 2006 Phys. Rev. Lett. 97 266801
|
[58] |
Fetter A L and Walecka J D 1971 Quantum Theory of Many Particle Systems (New York: MacGraw-Hill) p. 130
|
[59] |
Rezania H and Abdi A 2015 Euro. Phys. J. B 88 173
|
[60] |
Cserti J 2007 Phys. Rev. B 75 033405
|
[61] |
Cserti J, Csordas A and David G 2007 Phys. Rev. Lett. 99 066802
|
[62] |
Ohta T, Bostwick A, McChesney J L, Seyller T, Horn K and Rotenberg E 2007 Phys. Rev. Lett. 98 206802
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|