Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076101    DOI: 10.1088/1674-1056/25/7/076101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Behaviors of Zn2GeO4 under high pressure and high temperature

Shu-Wen Yang(杨淑雯)1, Fang Peng(彭放)1, Wen-Tao Li(李文涛)1,2, Qi-Wei Hu(胡启威)1, Xiao-Zhi Yan(晏小智)1,2, Li Lei(雷力)1, Xiao-Dong Li(李晓东)3, Duan-Wei He(贺端威)1
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The structural stability of Zn2GeO4 was investigated by in-situ synchrotron radiation angle dispersive x-ray diffraction. The pressure-induced amorphization is observed up to 10 GPa at room temperature. The high-pressure and high-temperature sintering experiments and the Raman spectrum measurement firstly were performed to suggest that the amorphization is caused by insufficient thermal energy and tilting Zn-O-Ge and Ge-O-Ge bond angles with increasing pressure, respectively. The calculated bulk modulus of Zn2GeO4 is 117.8 GPa from the pressure-volume data. In general, insights into the mechanical behavior and structure evolution of Zn2GeO4 will shed light on the micro-mechanism of the materials variation under high pressure and high temperature.

Keywords:  pressure-induced amorphization      high pressure and high temperature      phase transition      x-ray diffraction  
Received:  29 January 2016      Revised:  21 March 2016      Published:  05 July 2016
PACS:  61.05.cp (X-ray diffraction)  
  31.15.ae (Electronic structure and bonding characteristics)  
Fund: 

Project supported by the Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences (Grant No. U1332104).

Corresponding Authors:  Fang Peng     E-mail:  pengfang@scu.edu.cn

Cite this article: 

Shu-Wen Yang(杨淑雯), Fang Peng(彭放), Wen-Tao Li(李文涛), Qi-Wei Hu(胡启威), Xiao-Zhi Yan(晏小智), Li Lei(雷力), Xiao-Dong Li(李晓东), Duan-Wei He(贺端威) Behaviors of Zn2GeO4 under high pressure and high temperature 2016 Chin. Phys. B 25 076101

[1] Liu Z, Jing X and Wang L 2007 J. Electrochem. Soc. 154 H500
[2] Bender J P, Wager J F, Kissick J, Clark B L and Keszler D A 2002 J. Luminescence 99 311
[3] Shang M, Li G, Yang D, Kang X, Peng C, Cheng C and Lin J 2011 Dalton Trans. 40 9379
[4] Feng J K, Lai M O and Lu L 2011 Electrochem. Commun. 13 287
[5] Sato J, Kobayashi H, Ikarashi K, Saito N, Nishiyama H and Inoue Y 2004 J. Phys. Chem. B 108 4369
[6] Huang J, Wang X, Hou Y, Chen X, Wu L and Fu X 2008 Environ. Sci. Technol. 42 7387
[7] Ringwood A E and Major A 1967 Nature 215 1367
[8] Syono Y, Tokonami M and Matscui Y 1971 Phys. Earth Planet. Interiors 4 347
[9] Yi R, Feng J K, Lv D P, Gordina M L, Chen S, Choi D and Wang D H 2013 Nano Energy 2 498
[10] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[11] Yamanaka T, Shibata T, Kawasaki S and Kume S 1992 High Pressure Res. 67 493
[12] Liu L 1997 High Pressure Res. 77 245
[13] Arora A K 2000 Solid State Commun. 115 665
[14] Lyapin A G and Brazhkin V V 1996 Phys. Rev. B 54 12036
[15] Petit P E, Guyot F, Fiquet G and Itie J P 1996 Phys. Chem. Minerals. 23 173
[16] Liu H, Secco R A, Imanaka N and Adachi G 2002 Solid State Commun. 121 177
[17] Li Y D and Lan G X 1996 J. Phys. Chem. Solids. 57 1887
[18] Pilati T, Gramaccioli C M, Pezzotta F, Fermo P and Bruni S 1998 J. Phys. Chem. A 102 4990
[19] Andrault D, Bonhifd M A, Itie J P and Richet P 1996 Chem. Minerals 22 99
[20] Zhao Y, Yang Y, Zhu J, Ji G and Peng F 2015 Solid State Ionics 274 12
[21] Perottoni C A and Jornada J A H 1988 Science 280 886
[22] Richet P and Gillet P 1997 Eur. J. Mineral. 9 907
[23] Lee S K, Eng P J and Mao H K 2014 Mineralogy & Geochemistry 78 139
[24] Birch F 1978 J. Geophys. Res. 83 1257
[1] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[2] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[3] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[4] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[5] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[6] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[7] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[8] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[9] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[10] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[11] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[12] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[13] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[14] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[15] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
No Suggested Reading articles found!