Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076101    DOI: 10.1088/1674-1056/25/7/076101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Behaviors of Zn2GeO4 under high pressure and high temperature

Shu-Wen Yang(杨淑雯)1, Fang Peng(彭放)1, Wen-Tao Li(李文涛)1,2, Qi-Wei Hu(胡启威)1, Xiao-Zhi Yan(晏小智)1,2, Li Lei(雷力)1, Xiao-Dong Li(李晓东)3, Duan-Wei He(贺端威)1
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The structural stability of Zn2GeO4 was investigated by in-situ synchrotron radiation angle dispersive x-ray diffraction. The pressure-induced amorphization is observed up to 10 GPa at room temperature. The high-pressure and high-temperature sintering experiments and the Raman spectrum measurement firstly were performed to suggest that the amorphization is caused by insufficient thermal energy and tilting Zn-O-Ge and Ge-O-Ge bond angles with increasing pressure, respectively. The calculated bulk modulus of Zn2GeO4 is 117.8 GPa from the pressure-volume data. In general, insights into the mechanical behavior and structure evolution of Zn2GeO4 will shed light on the micro-mechanism of the materials variation under high pressure and high temperature.

Keywords:  pressure-induced amorphization      high pressure and high temperature      phase transition      x-ray diffraction  
Received:  29 January 2016      Revised:  21 March 2016      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  31.15.ae (Electronic structure and bonding characteristics)  
Fund: 

Project supported by the Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences (Grant No. U1332104).

Corresponding Authors:  Fang Peng     E-mail:  pengfang@scu.edu.cn

Cite this article: 

Shu-Wen Yang(杨淑雯), Fang Peng(彭放), Wen-Tao Li(李文涛), Qi-Wei Hu(胡启威), Xiao-Zhi Yan(晏小智), Li Lei(雷力), Xiao-Dong Li(李晓东), Duan-Wei He(贺端威) Behaviors of Zn2GeO4 under high pressure and high temperature 2016 Chin. Phys. B 25 076101

[1] Liu Z, Jing X and Wang L 2007 J. Electrochem. Soc. 154 H500
[2] Bender J P, Wager J F, Kissick J, Clark B L and Keszler D A 2002 J. Luminescence 99 311
[3] Shang M, Li G, Yang D, Kang X, Peng C, Cheng C and Lin J 2011 Dalton Trans. 40 9379
[4] Feng J K, Lai M O and Lu L 2011 Electrochem. Commun. 13 287
[5] Sato J, Kobayashi H, Ikarashi K, Saito N, Nishiyama H and Inoue Y 2004 J. Phys. Chem. B 108 4369
[6] Huang J, Wang X, Hou Y, Chen X, Wu L and Fu X 2008 Environ. Sci. Technol. 42 7387
[7] Ringwood A E and Major A 1967 Nature 215 1367
[8] Syono Y, Tokonami M and Matscui Y 1971 Phys. Earth Planet. Interiors 4 347
[9] Yi R, Feng J K, Lv D P, Gordina M L, Chen S, Choi D and Wang D H 2013 Nano Energy 2 498
[10] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[11] Yamanaka T, Shibata T, Kawasaki S and Kume S 1992 High Pressure Res. 67 493
[12] Liu L 1997 High Pressure Res. 77 245
[13] Arora A K 2000 Solid State Commun. 115 665
[14] Lyapin A G and Brazhkin V V 1996 Phys. Rev. B 54 12036
[15] Petit P E, Guyot F, Fiquet G and Itie J P 1996 Phys. Chem. Minerals. 23 173
[16] Liu H, Secco R A, Imanaka N and Adachi G 2002 Solid State Commun. 121 177
[17] Li Y D and Lan G X 1996 J. Phys. Chem. Solids. 57 1887
[18] Pilati T, Gramaccioli C M, Pezzotta F, Fermo P and Bruni S 1998 J. Phys. Chem. A 102 4990
[19] Andrault D, Bonhifd M A, Itie J P and Richet P 1996 Chem. Minerals 22 99
[20] Zhao Y, Yang Y, Zhu J, Ji G and Peng F 2015 Solid State Ionics 274 12
[21] Perottoni C A and Jornada J A H 1988 Science 280 886
[22] Richet P and Gillet P 1997 Eur. J. Mineral. 9 907
[23] Lee S K, Eng P J and Mao H K 2014 Mineralogy & Geochemistry 78 139
[24] Birch F 1978 J. Geophys. Res. 83 1257
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[9] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!