Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076101    DOI: 10.1088/1674-1056/25/7/076101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Behaviors of Zn2GeO4 under high pressure and high temperature

Shu-Wen Yang(杨淑雯)1, Fang Peng(彭放)1, Wen-Tao Li(李文涛)1,2, Qi-Wei Hu(胡启威)1, Xiao-Zhi Yan(晏小智)1,2, Li Lei(雷力)1, Xiao-Dong Li(李晓东)3, Duan-Wei He(贺端威)1
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The structural stability of Zn2GeO4 was investigated by in-situ synchrotron radiation angle dispersive x-ray diffraction. The pressure-induced amorphization is observed up to 10 GPa at room temperature. The high-pressure and high-temperature sintering experiments and the Raman spectrum measurement firstly were performed to suggest that the amorphization is caused by insufficient thermal energy and tilting Zn-O-Ge and Ge-O-Ge bond angles with increasing pressure, respectively. The calculated bulk modulus of Zn2GeO4 is 117.8 GPa from the pressure-volume data. In general, insights into the mechanical behavior and structure evolution of Zn2GeO4 will shed light on the micro-mechanism of the materials variation under high pressure and high temperature.

Keywords:  pressure-induced amorphization      high pressure and high temperature      phase transition      x-ray diffraction     
Received:  29 January 2016      Published:  05 July 2016
PACS:  61.05.cp (X-ray diffraction)  
  31.15.ae (Electronic structure and bonding characteristics)  
Fund: 

Project supported by the Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences (Grant No. U1332104).

Corresponding Authors:  Fang Peng     E-mail:  pengfang@scu.edu.cn

Cite this article: 

Shu-Wen Yang(杨淑雯), Fang Peng(彭放), Wen-Tao Li(李文涛), Qi-Wei Hu(胡启威), Xiao-Zhi Yan(晏小智), Li Lei(雷力), Xiao-Dong Li(李晓东), Duan-Wei He(贺端威) Behaviors of Zn2GeO4 under high pressure and high temperature 2016 Chin. Phys. B 25 076101

[1] Liu Z, Jing X and Wang L 2007 J. Electrochem. Soc. 154 H500
[2] Bender J P, Wager J F, Kissick J, Clark B L and Keszler D A 2002 J. Luminescence 99 311
[3] Shang M, Li G, Yang D, Kang X, Peng C, Cheng C and Lin J 2011 Dalton Trans. 40 9379
[4] Feng J K, Lai M O and Lu L 2011 Electrochem. Commun. 13 287
[5] Sato J, Kobayashi H, Ikarashi K, Saito N, Nishiyama H and Inoue Y 2004 J. Phys. Chem. B 108 4369
[6] Huang J, Wang X, Hou Y, Chen X, Wu L and Fu X 2008 Environ. Sci. Technol. 42 7387
[7] Ringwood A E and Major A 1967 Nature 215 1367
[8] Syono Y, Tokonami M and Matscui Y 1971 Phys. Earth Planet. Interiors 4 347
[9] Yi R, Feng J K, Lv D P, Gordina M L, Chen S, Choi D and Wang D H 2013 Nano Energy 2 498
[10] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[11] Yamanaka T, Shibata T, Kawasaki S and Kume S 1992 High Pressure Res. 67 493
[12] Liu L 1997 High Pressure Res. 77 245
[13] Arora A K 2000 Solid State Commun. 115 665
[14] Lyapin A G and Brazhkin V V 1996 Phys. Rev. B 54 12036
[15] Petit P E, Guyot F, Fiquet G and Itie J P 1996 Phys. Chem. Minerals. 23 173
[16] Liu H, Secco R A, Imanaka N and Adachi G 2002 Solid State Commun. 121 177
[17] Li Y D and Lan G X 1996 J. Phys. Chem. Solids. 57 1887
[18] Pilati T, Gramaccioli C M, Pezzotta F, Fermo P and Bruni S 1998 J. Phys. Chem. A 102 4990
[19] Andrault D, Bonhifd M A, Itie J P and Richet P 1996 Chem. Minerals 22 99
[20] Zhao Y, Yang Y, Zhu J, Ji G and Peng F 2015 Solid State Ionics 274 12
[21] Perottoni C A and Jornada J A H 1988 Science 280 886
[22] Richet P and Gillet P 1997 Eur. J. Mineral. 9 907
[23] Lee S K, Eng P J and Mao H K 2014 Mineralogy & Geochemistry 78 139
[24] Birch F 1978 J. Geophys. Res. 83 1257
[1] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[2] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[3] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[4] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[5] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[6] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[9] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[10] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[11] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[12] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[13] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[14] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[15] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
No Suggested Reading articles found!