Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 046103    DOI: 10.1088/1674-1056/25/4/046103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation

Shuang Li(李爽), Ming Chen(陈明)
School of Physics, Shandong University, Jinan 250100, China
Abstract  A new strategy for the facile synthesis of very stable and mono-dispersed silver (Ag) quantum dots (QDs) is developed by laser fragmentation of bulk Ag in water using polysorbate 80 as a dispersing and stabilizing agent. The surfactant plays an important role in the formation of size-controlled Ag nano-structures. The Ag QDs have excellent photo-stability of ~500 h and enhanced photoluminescence (PL) at 510 nm. This has significant implications for selective and ultrasensitive PL probes. Based on laser fragmentation in the biocompatible surfactant solution, our results have opened up a novel paradigm to obtain stable metal QDs directly from bulk targets. This is a breakthrough in the toxicity problems that arise from standard chemical fabrication.
Keywords:  size-controlled Ag nano-structures      pulsed laser fragmentation  
Received:  20 October 2015      Revised:  10 December 2015      Published:  05 April 2016
PACS:  61.46.-w (Structure of nanoscale materials)  
  52.38.Mf (Laser ablation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575102, 11105085, 11275116, and 11375108) and the Fundamental Research Funds of Shandong University, China (Grant No. 2015JC007).
Corresponding Authors:  Ming Chen     E-mail:  chenming@sdu.edu.cn

Cite this article: 

Shuang Li(李爽), Ming Chen(陈明) Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation 2016 Chin. Phys. B 25 046103

[1] Yarema M, Pichler S, Sytnyk M, Seyrkammer R, Lechner R T, Popovski G F, Jarzab D, Szendrei K, Resel R, Korovyanko O, Loi M A, Paris O, Hesser G and Heiss W 2011 ACS Nano 5 3758
[2] Patel S A, Richards C I, Hsiang J C and Dickson R M 2008 J. Am. Chem. Soc. 130 11602
[3] Yeh H C, Sharma J, Han J J, Martinez J S and Werner J H 2010 Nano Lett. 10 3106
[4] Kamalianfar A, Halim S A, Naseri M G, Navasery M, Din F U, Zahedi J A M, Behzad K, Lim K P, Monghadam A L and Chen S K 2013 Chin. Phys. B 22 088103
[5] Lin C Y, Yu C J, Lin Y H and Tseng W L 2010 Anal. Chem. 82 6830
[6] Deng C Y, Zhang G L, Zou B, Shi H L, Liang Y J, Li Y C, Fu J X and Wang W Z 2013 Chin. Phys. B 22 106102
[7] Yang C J, Zhao H B, Wang P P, Li J, Tang P, Qu S C, Lin F and Zhu X 2014 Chin. Phys. B 23 117302
[8] Wang Y, Dong R X and Yan X L 2015 Acta Phys. Sin. 64 048402 (in Chinese)
[9] Luo N Q, Huang Z Y, Li L, Shao Y Z and Chen D H 2013 Chin. Phys. Lett. 30 038101
[10] Li S, Chen M and Liu X D 2014 Opt. Express 22 18707
[11] Kubiliute R, Maximova K A, Lajevardipour A, Yong J, Hartley J S, Mohsin A S M, Blandin P, Chon J W M, Sentis M, Stoddart P R, Kabashin A, Rotomskis R, Clayton A H A and Juodkazis S 2013 Int. J. Nanomed. 8 2601
[12] Yan Z J, Bao R Q, Huang Y, Caruso A N, Oadri S B, Dinu C Z and Chrisey D B 2010 J. Phys. Chem. C 114 3869
[13] Chen M, Liu X D, Liu Y H and Zhao M W 2012 J. Appl. Phys. 111 103108
[14] Yan Z J, Bao R Q and Chrisey D B 2010 Nanotechnology 21 145609
[15] Mafune F, Kohno J Y, Takeda Y and Kondow T 2000 J. Phys. Chem. B 104 9111
[16] Yan Z J, Bao R Q and Chrisey D B 2011 Langmuir 27 851
[17] Jeon J S and Yeh C S 1998 J. Chin. Chem. Soc. 45 721
[1] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[2] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[3] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[4] Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy
Yi Wang(王一), Xiang Guo(郭祥), Jiemin Wei(魏节敏), Chen Yang(杨晨), Zijiang Luo(罗子江), Jihong Wang(王继红), Zhao Ding(丁召). Chin. Phys. B, 2020, 29(4): 046801.
[5] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[6] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
[7] Structural and electronic properties of transition-metal chalcogenides Mo5S4 nanowires
Ming-Shuai Qiu(邱明帅), Huai-Hong Guo(郭怀红), Ye Zhang(张也), Bao-Juan Dong(董宝娟), Sajjad Ali(阿里.萨贾德), Teng Yang(杨腾). Chin. Phys. B, 2019, 28(10): 106103.
[8] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[9] Van der Waals interlayer potential of graphitic structures: From Lennard-Jones to Kolmogorov-Crespy and Lebedeva models
Zbigniew Koziol, Grzegorz Gawlik, Jacek Jagielski. Chin. Phys. B, 2019, 28(9): 096101.
[10] Electronic and magnetic properties of CrI3 nanoribbons and nanotubes
Ji-Zhang Wang(王吉章), Jian-Qi Huang(黄建啟), Ya-Ning Wang(王雅宁), Teng Yang(杨腾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 077301.
[11] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[12] Electronic states and molecular orientation of ITIC film
Ying-Ying Du(杜莹莹), De-Qu Lin(林德渠), Guang-Hua Chen(陈光华), Xin-Yuan Bai(白新源), Long-Xi Wang(汪隆喜), Rui Wu(吴蕊), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Hong-Nian Li(李宏年). Chin. Phys. B, 2018, 27(8): 088801.
[13] Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study
Han-Xing Zhang(张汉星), Chao-Hao Hu(胡朝浩), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2018, 27(8): 083601.
[14] Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage
Cheng Zhang(张诚), Shaolong Tang(唐少龙), Mingsen Deng(邓明森), Youwei Du(都有为). Chin. Phys. B, 2018, 27(6): 066103.
[15] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
No Suggested Reading articles found!