Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 046201    DOI: 10.1088/1674-1056/ab7188

Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation

Minrong An(安敏荣)1, Mengjia Su(宿梦嘉)2, Qiong Deng(邓琼)2, Haiyang Song(宋海洋)1, Chen Wang(王晨)1, Yu Shang(尚玉)1
College of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, China, Fundamental Science on Aircraft Structural Mechanics and Strength Laboratory, Northwestern Polytechnical University, Xi'an, China
Abstract  Using molecular dynamics simulations, the plastic deformation behavior of nanocrytalline Ti has been investigated under tension and compression normal to the {0001}, {1010}, and {1210} planes. The results indicate that the plastic deformation strongly depends on crystal orientation and loading directions. Under tension normal to basal plane, the deformation mechanism is mainly the grain reorientation and the subsequent deformation twinning. Under compression, the transformation of hexagonal-close packed (HCP)-Ti to face-centered cubic (FCC)-Ti dominates the deformation. When loading is normal to the prismatic planes (both {1010} and {1210}), the deformation mechanism is primarily the phase transformation among HCP, body-centered cubic (BCC), and FCC structures, regardless of loading mode. The orientation relations (OR) of {0001}HCP||{111}FCC and <1210>HCP||<110>FCC, and {1010}HCP||{110}FCC and <0001>HCP||<010>FCC between the HCP and FCC phases have been observed in the present work. For the transformation of HCP→BCC→HCP, the OR is {0001}α1||{110}β||{1010}α2 (HCP phase before the critical strain is defined as α1-Ti, BCC phase is defined as β-Ti, and the HCP phase after the critical strain is defined as α2-Ti). Energy evolution during the various loading processes further shows the plastic anisotropy of nanocrystalline Ti is determined by the stacking order of the atoms. The results in the present work will promote the in-depth study of the plastic deformation mechanism of HCP materials.
Keywords:  molecular dynamics simulation      nanocrystalline Ti      anisotropic plasticity      deformation mechanism  
Received:  11 December 2019      Revised:  22 January 2020      Accepted manuscript online: 
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  61.46.-w (Structure of nanoscale materials)  
  64.70.Nd (Structural transitions in nanoscale materials)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11572259), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2019JQ-827, 2018JM1013, and 2018JQ5108), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 19JK0672).
Corresponding Authors:  Qiong Deng, Haiyang Song     E-mail:;

Cite this article: 

Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉) Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation 2020 Chin. Phys. B 29 046201

[1] Leyens C and Peters M 2003 Titanium and Titanium Alloys: Fundamentals and Applications (Darmstadt: Wiley-VCH) pp. 25-35
[2] Zhang Y F, Xue S, Li Q, Li J, Ding J, Niu T J, Su R, Wang H and Zhang X 2019 Acta Mater. 175 466
[3] Elias C N, Lima J H C, Valiev R, et al. 2008 Jom 60 46
[4] Das J, Kim K B, Baier F, Löser W and Eckert J 2005 Appl. Phys. Lett. 87 161907
[5] Peters M, Kumpfert J, Ward C H and Leyens C 2003 Adv. Eng. Mater. 5 419
[6] Banerjee D and Williams J C 2013 Acta Mater. 61 844
[7] Xiao L 2005 Mater. Sci. Eng. A 394 168
[8] Wang Q, Yin Y, Sun Q, Xiao L and Sun J 2014 J. Mater. Res. 29 569
[9] Liu B Y, Wang J, Li B, Lu L, Zhang X Y, Shan Z W, Li J, Jia C, Sun J and Ma E 2014 Nat. Commun. 5 3297
[10] Liu B Y, Wan L, Wang J, Ma E and Shan Z W 2015 Scr. Mater. 100 86
[11] Wang J, Liu L, Tomé C N, Mao S X and Gong S K 2013 Mater. Res. Lett. 1 81
[12] Tu J and Zhang S 2016 Mater. 96 143
[13] Ni C, Ding H and Jin X 2016 Comput. Mater. Sci. 111 163
[14] Chen P, Wang F and Li B 2019 Comput. Mater. Sci. 164 186
[15] Ren J, Sun Q, Xiao L, Ding X and Sun J 2014 Comput. Mater. Sci. 92 8
[16] An M, Deng Q, Li Y, Song H, Su M and Cai J 2017 Mater. 127 204
[17] Yu Q, Sun J, Morris J W Jr and Minor A M 2013 Scr. Mater. 69 57
[18] Ren J, Sun Q, Xiao L, Ding X and Sun J 2014 Mater. Sci. Eng. A 615 22
[19] Yu Q, Li S, Minor A M, Sun J and Ma E 2012 Appl. Phys. Lett. 100 063109
[20] Chen P, Wang F and Li B 2019 Acta Mater. 171 65
[21] Yang J X, Zhao H L, Gong H R, Song M and Ren Q Q 2018 Sci. Rep. 8 1992
[22] Zhao H, Hu X, Song M and Ni S 2017 Scr. Mater. 132 63
[23] An M, Song H and Su J 2012 Chin. Phys. B 21 106202
[24] Shahzad A, He M, Ghani S, Kashif M, Munir T and Yang F 2019 Chin. Phys. B 28 055201
[25] Li Y, Cai J, Mo D and Wang Y 2018 Chin. Phys. B 27 086401
[26] Liu Q, Guo Q N, Qian X F, Wang H N, Guo R L, Xiao Z J and Pei H J 2019 Acta Phys. Sin. 68 133101 (in Chinese)
[27] Li Y and Peng P 2019 Acta Phys. Sin. 68 076401 (in Chinese)
[28] Li R, Liu T, Chen X, Chen S C, Fu Y H and Liu L 2018 Acta Phys. Sin. 67 190202 (in Chinese)
[29] Lee B J 2007 Calphad 31 95
[30] Lee B J and Baskes M 2000 Phys. Rev. B 62 8564
[31] Wang X H, Shen W H, Huang X F, Zang J L and Zhao Y P 2017 Sci. China-Phys. Mech. Astron. 60 064612
[32] Wadley H N G, Zhou X, Johnson R A and Mechanisms M 2001 Progr. Mater. Sci. 46 329
[33] Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-Long A K, Smith G D W, Clifton P H, Martens R L and Kelly T F 2001 Acta Mater. 49 4005
[34] Wan L, Yu X X, Zhou X and Thompson G 2016 J. Appl. Phys. 119 245302
[35] Su M J, Deng Q, An M R, Liu L T and Ma C B 2019 Comput. Mater. Sci. 158 149
[36] Rao S I, Akdim B, Antillon E, Woodward C, Parthasarathy T A and Senkov O N 2019 Acta Mater. 168 222
[37] Faken D and Jónsson H 1994 Comput. Mater. Sci. 2 279
[38] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[39] Li D, Wang F C, Yang Z Y and Zhao Y P 2014 Sci. China-Phys. Mech. Astron. 57 2177
[40] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007
[41] Yu Q, Kacher J, Gammer C, Traylor R, Samanta A, Yang Z and Minor A M 2017 Scr. Mater. 140 9
[42] Hong D H, Lee T W, Lim S H, Kim W Y and Hwang S K 2013 Scr. Mater. 69 405
[43] Wu H C, Kumar A, Wang J, Bi X F, Tomé C N, Zhang Z and Mao S X 2016 Sci. Rep. 6 24370
[44] An M R, Deng Q, Su M J, Song H Y and Li Y L 2017 Mater. Sci. Eng. A 684 491
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!