Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067801    DOI: 10.1088/1674-1056/abd9b5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide

Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman
Department of Optoelectronics, University of Kerala, Trivandrum 695581, Kerala, India
Abstract  The paper explores the evolution of thermal behavior of the material by studying the variations in thermal diffusivity using the single beam thermal lens (TL) technique. For this purpose, the decomposition of Cu(OH)2 into CuO is studied in a time range up to 120 h, by subjecting the sample to morphological, structural, and spectroscopic characterizations. The time evolution of thermal diffusivity can be divided into three regions for demonstrating the dynamics of the reaction. When the reaction is complete, the thermal diffusivity is also found to be saturated. In addition to the morphological modifications, from rods to flakes, the variations in the amount of hydroxyl group are attributed to be responsible for the enhancement of base fluid's thermal diffusivity by 165%. Thus the study unveils the role of hydroxyl groups in the thermal behavior of CuO.
Keywords:  thermal diffusivity      CuO      thermal lens      morphology      hydroxyl group  
Received:  25 October 2020      Revised:  06 January 2021      Accepted manuscript online:  08 January 2021
PACS:  78.20.nb (Photothermal effects)  
  66.30.Xj (Thermal diffusivity)  
  61.46.-w (Structure of nanoscale materials)  
Corresponding Authors:  S Sankararaman     E-mail:  drssraman@gmail.com

Cite this article: 

Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide 2021 Chin. Phys. B 30 067801

[1] Dey K K, Kumar A, Shanker R, Dhawan A, Wan M, Yadav R R and Srivastava A K 2012 RSC Adv. 2 1387
[2] Gupta V, Magotra U, Sharma A K and Sharma M 2020 Russ. J. Phys. Chem. A 94 2312
[3] Yu W, Xie H, Chen L and Li Y 2009 Thermochim. Acta 491 92
[4] Shima P D, Philip J and Raj B 2010 J. Phys. Chem. C 114 18825
[5] Sebastian R, Swapna M S, Raj V, Hari M and Sankararaman S 2018 Mater. Res. Express 5 75001
[6] Sekhar T V R, Nandan G, Prakash R and Muthuraman M 2018 Mater. Today Proc. 5 6176
[7] Suresh T, Uthayakumar G and Srinivasan R 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS) (IEEE) p. 202
[8] Das S K, Putra N, Thiesen P and Roetzel W 2003 J. Heat Transf. 125 567
[9] Sultana J, Das A, Das A, Saha N R, Karmakar A and Chattopadhyay S 2016 Thin Solid Films 612 331
[10] Masudy-Panah S, Siavash Moakhar R, Chua C S, Tan H R, Wong T I, Chi D and Dalapati G K 2016 ACS Appl. Mater. Interfaces 8 1206
[11] Jin Z, Zhang X, Li Y, Li S and Lu G 2007 Catal. Commun. 8 1267
[12] Sekhar H, Kumar Y R and Rao D N 2015 Observation of Confinement Effects through Liner and Nonlinear Absorption Spectroscopy in Cuprous oxide IOP Conference Series: Materials Science and Engineering (Vol. 73) (IOP Publishing) p. 12078
[13] Wang W, Wang L, Shi H and Liang Y 2012 Cryst. Eng. Comm. 14 5914
[14] Anandan S, Wen X and Yang S 2005 Mater. Chem. Phys. 93 35
[15] Zheng L and Liu X 2007 Mater. Lett. 61 2222
[16] Hong Z, Cao Y and Deng J 2002 Mater. Lett. 52 34
[17] Das D, Nath B C, Phukon P and Dolui S K 2013 Colloids Surfaces B Biointerfaces 101 430
[18] Sebastian R, Swapna M S and Sankararaman S 2020 TSN Appl. Sci. 2 1
[19] Prasher R, Phelan P E and Bhattacharya P 2006 Nano Lett. 6 1529
[20] Wang B X, Zhou L P and Peng X F 2003 Int. J. Heat Mass Transf. 46 2665
[21] Hari M, Joseph S A, Mathew S, Nithyaja B, Nampoori V P N and Radhakrishnan P 2013 Int. J. Therm. Sci. 64 188
[22] Bhosale M A, Karekar S C and Bhanage B M 2016 ChemistrySelect 1 6297
[23] Chen K and Xue D 2013 J. Phys. Chem. C 117 22576
[24] Cudennec Y and Lecerf A 2003 Solid state Sci. 5 1471
[25] Lee S, Choi S-S, Li and S and Eastman J A 1999 J. Heat Transfer 121 280
[26] Yu W and Choi S U S 2004 J. Nanoparticle Res. 6 355
[27] Yu W and Choi S U S 2003 J. Nanoparticle Res. 5 167
[28] Bindhu C V, Harilal S S, Nampoori V P N and Vallabhan C P G 1998 Optical Engineering 37 2791
[29] Sanakara Raman S 1999 Investigation on thermal diffusivity of some selected materials using laser induced photoacoustic technique (Ph. D. thesis) (Kerala: International School of Photonics, Cochin University of Science and Technology)
[30] Sankara Raman S, Nampoori V P N, Vallabhan C P G, Ambadas G and Sugunan S 1999 J. Appl. Phys. 85 1987
[31] Sankara Raman S, Nampoori V P N, Vallabhan C P G, Ambadas G and Sugunan S 1995 Appl. Phys. Lett. 67 2939
[32] Havaux M, Lorrain L and Leblanc R M 1990 Photosynth. Res. 24 63
[33] Ghizoni C C and Miranda L C M 1985 Phys. Rev. B 32 8392
[34] Swapna M S, Manjusha S, Raj V, Hari M and Sankararaman S 2018 JOSA B 35 1662
[35] Raj V, Soumya S, Swapna M S and Sankararaman S 2018 Mater. Res. Express 5 115504
[36] Navas M J and Jimenez A M 2003 Crit. Rev. Anal. Chem. 33 77
[37] Mahdieh M H and Akbari Jafarabadi M 2012 Opt. Laser Technol. 44 78
[38] Sebastian R, Swapna M S, Devi H V saritha, Raj V, Hari M and Sankararaman S 2019 Mater. Res. Express 6 116202
[39] Liu Y, Ren W and Cui H 2011 Micro. Nano. Lett. 6 823
[40] Li C, Yin Y, Hou H, Fan N, Yuan F, Shi Y and Meng Q 2010 Solid State Commun. 150 585
[41] Prakash V and Diwan R K 2015 Indian J. Pure Appl. Phys. 53 753
[42] Shahmiri M, Ibrahim N A, Shayesteh F, Asim N and Motallebi N 2013 J. Mater. Res. 28 3109
[43] Zhang Y X, Huang M, Li F and Wen Z Q 2013 Int. J. Electrochem. Sci. 8 8645
[44] Zhang L, Lu W, Feng Y, Ni J, Lü Y and Shang X 2008 Acta Physico-Chimica Sin. 24 2257
[45] Nath A and Khare A 2011 J. Appl. Phys. 110 43111
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[4] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[5] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[6] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[7] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[8] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[9] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[10] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[11] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[12] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[13] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[14] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[15] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
No Suggested Reading articles found!