Special Issue:
SPECIAL TOPIC —Terahertz physics
|
SPECIAL TOPIC—Terahertz physics |
Prev
Next
|
|
|
High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure |
Jinming Liang(梁晋铭)1,2, Jiangtao Lei(雷江涛)2, Yun Wang(汪云)2, Yan Ding(丁燕)2, Yun Shen(沈云)1,2, Xiaohua Deng(邓晓华)2 |
1 Department of Physics, Nanchang University, Nanchang 330031, China;
2 Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China |
|
|
Abstract Graphene and black phosphorus have attracted tremendous attention in optics due to their support of localized plasmon resonance. In this paper, a structure consisted of graphene-black phosphorus heterostructure is proposed to realize terahertz anisotropic near-perfect absorption. We demonstrate that strong plasmonic resonances in graphene-black phosphorus heterostructure nanoribbons can both be provided along armchair and zigzag directions, and dominated by the distance between the graphene and black phosphorus ribbons. In particular, the maximum absorption of 99.6% at 10.2 THz along armchair direction can be reached. The proposed high performance anisotropic structure may have promising potential applications in photodetectors, biosensors, and terahertz imaging.
|
Received: 14 May 2020
Revised: 04 June 2020
Accepted manuscript online:
|
PACS:
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61865009 and 61927813). |
Corresponding Authors:
Yun Shen, Xiaohua Deng
E-mail: shenyun@ncu.edu.cn;dengxiaohua0@gmail.com
|
Cite this article:
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华) High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure 2020 Chin. Phys. B 29 087805
|
[1] |
Novoselov K S, Geim A K and Morozov S V 2004 Science 306 666
|
[2] |
Geim A K and Novoselov K S 2007 Nat. Mater 6 183
|
[3] |
A H Castro Neto, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[4] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
|
[5] |
García de Abajo F J 2014 ACS Photon. 1 135
|
[6] |
Liao B, Guo X, Hu H, Liu N, Chen K, Yang X and Q Dai 2018 Chin. Phys. B 27 094101
|
[7] |
Gao W, Shu J, Qiu C and Xu Q 2012 ACS Nano 6 7806
|
[8] |
Chen J, Badioli M and Alonso-Gonzalez P 2012 Nature 487 77
|
[9] |
Mou N, Sun S, Dong H, Dong S, He Q, Zhou L and Zhang 2018 Opt. Express 26 11728
|
[10] |
Yao G, Ling F, Yue J, Luo C, Ji J and Yao J 2016 Opt. Express 24 1518
|
[11] |
Ke S, Wang B, Huang H, Long H, Wang K and Lu P 2015 Opt. Express 23 8888
|
[12] |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
|
[13] |
Chen Y, Jiang G, Chen S, Guo Z and Yu X 2015 Opt. Express 23 12823
|
[14] |
Li L, Yu Y, G J Y e, Ge Q, Ou X, Wu H and Feng D 2014 Nat. Nanotech. 9 372
|
[15] |
Huang M, Wang M, Chen C, Ma Z, Li X, Han J and Wu Y 2016 Adv. Mate 28 3481
|
[16] |
Abate Y, Akinwande D, Gamage S, Wang H, Snure M, Poudel N and Cronin S B 2018 Adv. Mater. 30 1704749.1
|
[17] |
Fang C, Liu Y, Han G, Shao Y, Zhang J and Hao Y 2018 Opt. Express 26 27683
|
[18] |
Fo Q, Ling P, Chen X, Quan X, Ouyang C and Zhang X 2018 IEEE Photon. J. 10 1
|
[19] |
Wang J and Jiang Y 2017 Opt. Express 25 5206
|
[20] |
Wang J, Jiang Y and Hu Z 2017 Opt. Express 25 22149
|
[21] |
Debu D T, Bauman S J, French D, Churchill H O and Herzog J B 2018 Sci. Rep. 8 3224
|
[22] |
Wang G, Wu L, Yan J, Zhou Z, Ma R, Yang H, Li J, Gu C, Bao L, Du S and Gao H 2018 Chin. Phys. B. 27 077303
|
[23] |
Hu R, Ma X, An C and Liu J 2019 Chin. Phys. B. 28 117802
|
[24] |
Hong Q, Xiong F, Xu W, Zhu Z, Liu K, Yuan X, Zhang J and Qin S 2018 Opt. Express 26 22528
|
[25] |
Nong J, Wei W, Wang W, Lan G, Shang Z, Yi J and Tang L 2018 Opt. Express 26 1633
|
[26] |
Liu Z and Aydin K 2016 Nano Lett. 16 3457
|
[27] |
Han L, Wang L, Xing H and Chen X 2018 Acs Photon. 5 3828
|
[28] |
Wang Y, Song M, Pu M, Gu Y, Hu C, Zhao Z, Wang C, Yu H and Luo X 2016 Plasmonics 11 1201
|
[29] |
Chen P, Argyropoulos C, Farhat M and Gomez-diaz J S 2017 Nanophotonics 6 1239
|
[30] |
Liu Y, Shivananju B N, Wang Y, Zhang Y, Yu W, Xiao S, Sun T, Ma W, Mu H, Lin S, Zhang H, Lu Y, Qiu C, Li S and Bao Q 2017 Appl. Mater. Inter. 9 36137
|
[31] |
Hwang E H and Sarma S D 2007 Phys. Rev. B 75 205418
|
[32] |
Hanson G W J 2008 Appl. Phys. 103 064302
|
[33] |
Jablan M, Buljan H and Soljacic M 2009 Phys. Rev. B 80 245435
|
[34] |
Low T, Roldan R, Wang H, Xia F, Avouris P, Moreno L M and Guinea F 2014 Phys. Rev. Lett. 113 106802
|
[35] |
Fei Z, Goldflam M D, Wu J S, Dai S, Wagner M, McLeod A S, Liu M K, Post K W, Zhu S, Janssen G C A M, Fogler M M and Basov D N 2015 Nano Lett. 15 8271
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|