Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027306    DOI: 10.1088/1674-1056/25/2/027306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching technology

Yan-Hui Zhang(张彦辉)1, Jie Wei(魏杰)1, Chao Yin(尹超)1, Qiao Tan(谭桥)1, Jian-Ping Liu(刘建平)1, Peng-Cheng Li(李鹏程)1, Xiao-Rong Luo(罗小蓉)1,2
1. State Key Laboratory of Electronic Thin Films and Integrated Devices. University of Electronic Science and Technology of China, Chengdu 610054, China;
2. Science and Technology on Analog Integrated Circuit Laboratory, Chongqing 400060, China
Abstract  A uniform doping ultra-thin silicon-on-insulator (SOI) lateral-double-diffused metal-oxide-semiconductor (LDMOS) with low specific on-resistance (Ron,sp) and high breakdown voltage (BV) is proposed and its mechanism is investigated. The proposed LDMOS features an accumulation-mode extended gate (AG) and back-side etching (BE). The extended gate consists of a P- region and two diodes in series. In the on-state with VGD>0, an electron accumulation layer is formed along the drift region surface under the AG. It provides an ultra-low resistance current path along the whole drift region surface and thus the novel device obtains a low temperature distribution. The Ron,sp is nearly independent of the doping concentration of the drift region. In the off-state, the AG not only modulates the surface electric field distribution and improves the BV, but also brings in a charge compensation effect to further reduce the Ron,sp. Moreover, the BE avoids vertical premature breakdown to obtain high BV and allows a uniform doping in the drift region, which avoids the variable lateral doping (VLD) and the “hot-spot” caused by the VLD. Compared with the VLD SOI LDMOS, the proposed device simultaneously reduces the Ron,sp by 70.2% and increases the BV from 776 V to 818 V.
Keywords:  LDMOS      accumulation gate      back-side etching      breakdown voltage      specific on-resistance  
Received:  10 August 2015      Revised:  12 October 2015      Published:  05 February 2016
PACS:  73.40.Ty (Semiconductor-insulator-semiconductor structures)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 61376079).
Corresponding Authors:  Xiao-Rong Luo     E-mail:  xrluo@uestc.edu.cn

Cite this article: 

Yan-Hui Zhang(张彦辉), Jie Wei(魏杰), Chao Yin(尹超), Qiao Tan(谭桥), Jian-Ping Liu(刘建平), Peng-Cheng Li(李鹏程), Xiao-Rong Luo(罗小蓉) A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching technology 2016 Chin. Phys. B 25 027306

[1] Ludikhuize A W 2001 Proceedings of the 31 st European, IEEE Solid-State Device Research Conference, September 11-13, 2001, p. 35
[2] Iqbal M M, Udrea F and Napoli E 2009 IEEE Proceedings of the 21 st International Symposium on Power Semiconductor Devices and ICs, June 14-18, 2009, Barcelona, Spain, p. 247
[3] Ming Q, Li Y F, Zhou X, Li Z J and Zhang B 2014 IEEE Electron Dev. Lett. 35 774
[4] Chen X B U S Patent 5216275 [1993-06-01]
[5] Chen Y, Liang Y C, Samudra G S, Xin Y, Buddharaju K D and H H Feng 2008 IEEE Trans. Electron Dev. 55 211
[6] Luo X, Wei J, Shi X, Zhou K, Tian R, Zhang B and Li Z 2014 IEEE Trans. Electron Dev. 61 4304
[7] Merchant S, Arnold E, Baumgart H, Mukherjee S, Pein H and Pinker R 1991 IEEE Proceedings of the 3rd International Symposium on Power Semiconductor Devices and ICs, April 22-24, 1991, Maryland, USA, p. 31
[8] Luo X R, Wei J, Shi X L, Zhou K, Tian R C, Zhang B and Li Z J 2014 IEEE Trans. Electron. Dev. 61 4304
[9] Udrea F, Trajkovic T, Lee C, Garner D, Yuan X, Joyce J, Udugampola N, Bonnet G, Coulson D, Jacques R, Izmajlowicz M, van der Duijn Schouten N, Ansari Z, Moyse P and Amaratunga G A J 2005 IEEE Proceedings of the 17th International Symposium on Power Semiconductor Devices and ICs, Santa Barbara, USA, p. 267
[10] Leung Y K, Amit K P, Kenneth E G, James D P and Wong S S 1997 IEEE Electron Dev. Lett. 18 414
[11] Zhang S, Sin J K O, Lai T M L and Ko P K 1999 IEEE Trans. Electron Dev. 46 1036
[12] T Trajkovic, F Udrea, C Lee, N Udugampola, V Pathirana, A Mihaila and G A J Amaratunga 2008 IEEE Proceedings of the 20th International Symposium on Power Semiconductor Devices and ICs, May 18-22, 2008, Oralando, USA, p. 327
[13] Lyu X J and Chen X B 2013 IEEE Trans. Electron Dev. 60 3821
[14] Chen X B and Sin J K O 2001 IEEE Trans. Electron Dev. 48 344
[15] K P Gan, Yung C Liang, Ganesh S Samudra, S M Xu and Liu Y 2001 Power Electronics Specialists Conference, June 17-21, 2001, Vancouver, Canada, p. 2156
[16] Vestling L, Edholm B, Olsson J, Tiensuu S and Soderbarg A 1997 Proceedings of the International Symposium on Power Semiconductor Devices & IC's, May 26-29, 1997, Weimar, Germany, p. 45
[17] Wei J, Luo X, Zhang Y, Li P, Zhou K, Li Z and Zhang B 2015 Proceedings of the International Symposium on Power Semiconductor Devices and IC's, May 10-14, 2015, Hong Kong, China, p. 185
[18] Luo Y C, Luo X R, Hu G Y, Fan Y H, Li P C, Wei J, Tan Q and Zhang B 2014 Chin. Phys. B 23 077306
[19] Z Lin and X B Chen 2015 IEEE Electron Dev. Lett. 36 588
[20] Matsumura A, Sasaki T and Kitahara K US patent 0170940
[2003].
[21] Udrea F, Trajkovicand T and Amaratunga G A J 2004 Proceedings of IEEE Int. Electron Devices, December 13-15, 2004, San Francisco, USA, p. 451
[22] Udrea F and Amaratunga G US patent 6703684
[2004]
[1] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[2] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[3] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[4] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
[5] A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋). Chin. Phys. B, 2020, 29(12): 127701.
[6] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[7] Stacked lateral double-diffused metal-oxide-semiconductor field effect transistor with enhanced depletion effect by surface substrate
Qi Li(李琦), Zhao-Yang Zhang(张昭阳), Hai-Ou Li(李海鸥), Tang-You Sun(孙堂友), Yong-He Chen(陈永和), Yuan Zuo(左园). Chin. Phys. B, 2019, 28(3): 037201.
[8] 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor
Sheng-Lei Zhao(赵胜雷), Zhi-Zhe Wang(王之哲), Da-Zheng Chen(陈大正), Mao-Jun Wang(王茂俊), Yang Dai(戴扬), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(2): 027301.
[9] A snapback-free TOL-RC-LIGBT with vertical P-collector and N-buffer design
Weizhong Chen(陈伟中), Yao Huang(黄垚), Lijun He(贺利军), Zhengsheng Han(韩郑生), Yi Huang(黄义). Chin. Phys. B, 2018, 27(8): 088501.
[10] Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions
Wei Mao(毛维), Hai-Yong Wang(王海永), Peng-Hao Shi(石朋毫), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(4): 047305.
[11] Closed-form breakdown voltage/specific on-resistance model using charge superposition technique for vertical power double-diffused metal-oxide-semiconductor device with high-κ insulator
Xue Chen(陈雪), Zhi-Gang Wang(汪志刚), Xi Wang(王喜), James B Kuo. Chin. Phys. B, 2018, 27(4): 048502.
[12] Improvement of reverse blocking performance in vertical power MOSFETs with Schottky-drain-connected semisuperjunctions
Wei Mao(毛维), Hai-Yong Wang(王海永), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(4): 047306.
[13] Novel high-K with low specific on-resistance high voltage lateral double-diffused MOSFET
Li-Juan Wu(吴丽娟), Zhong-Jie Zhang(章中杰), Yue Song(宋月), Hang Yang(杨航), Li-Min Hu(胡利民), Na Yuan(袁娜). Chin. Phys. B, 2017, 26(2): 027101.
[14] A novel P-channel SOI LDMOS structure with non-depletion potential-clamped layer
Wei Li(李威), Zhi Zheng(郑直), Zhigang Wang(汪志刚), Ping Li(李平), Xiaojun Fu(付晓君), Zhengrong He(何峥嵘), Fan Liu(刘凡), Feng Yang(杨丰), Fan Xiang(向凡), Luncai Liu(刘伦才). Chin. Phys. B, 2017, 26(1): 017701.
[15] Numerical and experimental study of the mesa configuration in high-voltage 4H-SiC PiN rectifiers
Xiao-Chuan Deng(邓小川), Xi-Xi Chen(陈茜茜), Cheng-Zhan Li(李诚瞻), Hua-Jun Shen(申华军), Jin-Ping Zhang(张金平). Chin. Phys. B, 2016, 25(8): 087201.
No Suggested Reading articles found!