Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018205    DOI: 10.1088/1674-1056/25/1/018205
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

Xiqian Yu(禹习谦), Enyuan Hu(胡恩源), Seongmin Bak,Yong-Ning Zhou(周永宁), Xiao-Qing Yang(杨晓青)
Chemistry Department, Brookhaven National Laboratory Upton, NY 11973, USA

Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems.

Keywords:  thermal stability      cathode      oxide      lithium ion batteries      safety  
Received:  14 May 2015      Revised:  04 June 2015      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  88.80.ff (Batteries)  
  68.60.Dv (Thermal stability; thermal effects)  

Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

Corresponding Authors:  Xiao-Qing Yang     E-mail:

Cite this article: 

Xiqian Yu(禹习谦), Enyuan Hu(胡恩源), Seongmin Bak,Yong-Ning Zhou(周永宁), Xiao-Qing Yang(杨晓青) Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability 2016 Chin. Phys. B 25 018205

[1] Tarascon J M and Armand M 2001 Nature 414 359
[2] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[3] Goodenough J B 2013 Acc. Chem. Res. 46 1053
[4] Goodenough J B and Park K S 2013 J. Am. Chem. Soc. 135 1167
[5] Balakrishnan P G, Ramesh R and Kumar T P 2006 J. Power Sources 155 401
[6] Wang Q S, Ping P, Zhao X J, Chu G Q, Sun J H and Chen C H 2012 J. Power Sources 208 210
[7] Hammami A, Raymond N and Armand M 2003 Nature 424 635
[8] Yang H, Bang H, Amine K and Prakash J 2005 J. Electrochem. Soc. 152 A73
[9] Richard M N and Dahn J R 1999 J. Electrochem. Soc. 146 2068
[10] Richard M N and Dahn J R 1999 J. Electrochem. Soc. 146 2078
[11] Cho T H, Tanaka M, Onishi H, Kondo Y, Nakamura T, Yamazaki H, Tanase S and Sakai T 2008 J. Power Sources 181 155
[12] Huang X S 2011 J. Solid State Electrochem. 15 649
[13] Arora P and Zhang Z M 2004 Chem. Rev. 104 4419
[14] Sloop S E, Pugh J K, Wang S, Kerr J B and Kinoshita K 2001 Electrochem. Solid-State Lett. 4 A42
[15] Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj J S and Kim H 2004 J. Electrochim. Acta 50 247
[16] Sun X, Lee H S, Yang X Q and McBreen J 2002 Electrochem. Solid-State Lett. 5 A248
[17] Xiang H F, Wang H, Chen C H, Ge X W, Guo S, Sun J H and Hu W Q 2009 J. Power Sources 191 575
[18] Baba Y, Okada S and Yamaki J I 2002 Solid State Ionics 148 311
[19] MacNeil D, Lu Z, Chen Z and Dahn J R 2002 J. Power Sources 108 8
[20] Guilmard M, Croguennec L and Delmas C 2003 Chem. Mater. 15 4484
[21] Guilmard M, Croguennec L, Denux D and Delmas C 2003 Chem. Mater. 15 4476
[22] Dahn J, Fuller E, Obrovac M and Von Sacken U 1994 Solid State Ionics 69 265
[23] Arai H, Okada S, Sakurai Y and Yamaki J I 1998 Solid State Ionics 109 295
[24] Ong S P, Jain A, Hautier G, Kang B and Ceder G 2010 Electrochem. Commun. 12 427
[25] Li G H, Azuma H and Tohda M 2002 Electrochem. Solid-State Lett. 5 A135
[26] Andersson A S, Thomas J O, Kalska B and Haggstrom L 2000 Electrochem. Solid-State Lett. 3 66
[27] Belharouak I, Lu W Q, Vissers D and Amine K 2006 Electrochem. Commun. 8 329
[28] Golubkov A W, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A and Hacker V 2014 Rsc Adv. 4 3633
[29] Wang L, Maxisch T and Ceder G 2007 Chem. Mater. 19 543
[30] Wu L J, Nam K W, Wang X J, Zhou Y, Zheng J C, Yang X Q and Zhu Y 2011 Chem. Mater. 23 3953
[31] Bak S M, Nam K W, Chang W, Yu X, Hu E, Hwang S, Stach E A, Kim K B, Chung K Y and Yang X Q 2013 Chem. Mater. 25 337
[32] Nam K W, Bak S M, Hu E, Yu X, Zhou Y, Wang X, Wu L, Zhu Y, Chung K Y and Yang X Q 2013 Adv. Funct. Mater. 23 1047
[33] Bak S M, Hu E, Zhou Y, Yu X, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q and Nam K W 2014 ACS Appl. Mater. Interface 6 22594
[34] Hu E, Bak S M, Liu J, Yu X, Zhou Y, Ehrlich S N, Yang X Q and Nam K W 2014 Chem. Mater. 26 1108
[35] Hu E, Bak S M, Senanayake S D, Yang X Q, Nam K W, Zhang L and Shao M 2015 J. Power Sources 277 193
[36] Yabuuchi N and Ohzuku T 2003 J. Power Sources 119 171
[37] Ohzuku T and Makimura Y 2001 Chem. Lett. 30 642
[38] Ellis B L, Lee K T and Nazar L F 2010 Chem. Mater. 22 691
[39] Kim G H, Myung S T, Bang H J, Prakash J and Sun Y K 2004 Electrochem. Solid-State Lett. 7 A477
[40] Ngala J K, Chernova N A, Ma M, Mamak M, Zavalij P Y and Whittingham M S 2004 J. Mater. Chem. 14 214
[41] Oh S W, Park S H, Park C W and Sun Y K 2004 Solid State Ionics 171 167
[42] Zhong Q M, Bonakdarpour A, Zhang M J, Gao Y and Dahn J R 1997 J. Electrochem. Soc. 144 205
[43] Xiao J, Chen X L, Sushko P V, SushkoML, Kovarik L, Feng J J, Deng Z Q, Zheng J M, Graff G L, Nie Z M, Choi DW, Liu J, Zhang J G and Whittingham M S 2012 Adv. Mater. 24 2109
[44] Kunduraci M, Al-Sharab J F and Amatucci G G 2006 Chem. Mater. 18 3585
[45] Kunduraci M and Amatucci G G 2008 Electrochim. Acta 53 4193
[46] Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Le Cras F, Jouanneau S and Martinet S 2009 J. Power Sources 189 344
[47] Shin D W, Bridges C A, Huq A, Paranthaman M P and Manthiram A. 2012 Chem. Mater. 24 3720
[48] Kim J H, Myung S T, Yoon C S, Kang S G and Sun Y K 2004 Chem. Mater. 16 906
[49] Ariyoshi K, Iwakoshi Y, Nakayama N and Ohzuku T 2004 J. Electrochem. Soc. 151 A296
[50] Bhaskar A, Gruner W, Mikhailova D and Ehrenberg H 2013 Rsc Adv. 3 5909
[51] Patoux S, Sannier L, Lignier H, Reynier Y, Bourbon C, Jouanneau S, Le Cras F and Martinet S 2008 Electrochim. Acta 53 4137
[52] Tarascon J M and Guyomard D 1993 Electrochim. Acta 38 1221
[53] Whittingham M S 2004 Chem. Rev. 104 4271
[54] Yu X, Lyu Y, Gu L, Wu H, Bak S M, Zhou Y, Amine K, Ehrlich S N, Li H, Nam K W and Yang X Q 2014 Adv. Energy Mater. 4 1300950
[55] Reed J and Ceder G 2004 Chem. Rev. 4 10
[56] Figgis B N and Hitchman M A 2000 Mineralogical Applications of Crystal Field Theory (New York: Wiley-VCH) p. 116
[57] Burns R G 1970 Mineralogical Applications of Crystal Field Theory (New York: Cambridge University Press) p. 17
[58] Choi S and Manthiram A 2002 J. Electrochem. Soc 149 A1157
[59] Hu E, Bak S M, Liu Y, Liu J, Yu X, Zhou Y N, Zhou J, Khalifah P, Ariyoshi K, Nam K W and Yang X Q 2016 Adv. Energy Mater. 6 1501662
[60] Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H and Chen L 2013 Adv. Energy Mater. 3 1358
[61] Gu L, Zhu C, Li H, Yu Y, Li C, Tsukimoto S, Maier J and Ikuhara Y 2013 J. Am. Chem. Soc. 133 4661
[62] Sun Y K, Myung S T, Park B C, PrakashJ, Belharouak I and Amine K 2009 Nat. Mater. 8 320
[63] Lu X, MacNeil D D and Dahn J R 2001 Electrochem. Solid-State Lett. 4 A191
[64] Thackeray M M, Johnson C S, Vaughey J T, Li N and Hackney S A 2006 J. Mater. Chem. 15 2257
[65] Mohanty D, Kalnaus S, Meisner R A, Rhodes K, Li J, Payzant E A, Wood III D L and Daniel C 2013 J. Power Sources 229 239
[66] Lyu Y, Zhao N, Hu E, Xiao R, Yu X, Gu L, Yang X Q and Li H 2015 Chem. Mater. 27 5238
[67] Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Sauban'ere M, Doublet M L, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G and Tarascon J M 2015 Nat. Mater. 14 230
[68] Gu M, Belharouak L, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J and Wang C M 2013 ACS nano 7 760
[69] Xu B, Fell C R, Chi M and Meng Y S 2011 Energy Environ. Sci. 4 2223
[70] Zheng J, Gu M, Xiao J, Polzin B J, Yan P, Chen X, Wang C and Zhang J G 2014 Chem. Mater. 26 6320
[1] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[2] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[3] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[4] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[5] Device physics and design of FD-SOI JLFET with step-gate-oxide structure to suppress GIDL effect
Bin Wang(王斌), Xin-Long Shi(史鑫龙), Yun-Feng Zhang(张云峰), Yi Chen(陈伊), Hui-Yong Hu(胡辉勇), and Li-Ming Wang(王利明). Chin. Phys. B, 2021, 30(4): 047401.
[6] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[7] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[8] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[9] Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
Jian-Xing Zhao(赵建行), Jian-Lin Song(宋建林), Yao Zhou(周姚), Rui-Long Zhao(赵瑞龙), Yi-Chao Liu(刘艺超), Jian-Hong Zhou(周见红). Chin. Phys. B, 2020, 29(9): 094205.
[10] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[11] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[12] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[13] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[14] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[15] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
No Suggested Reading articles found!